Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen können ihren Tod "umprogrammieren"

23.07.2009
Proteine, die den programmierten Zelltod von krankhaft wuchernden Zellen verhindern, spielen bei Krebserkrankungen eine wichtige Rolle.

Diese Proteine können chemisch unterdrückt werden, um das Abtöten von Tumoren zu erleichtern. Dies gilt als neuer, vielversprechender Weg in der Krebstherapie. Eine internationale Forschergruppe mit Berner Beteiligung hat nun weitere Hinweise darauf gefunden, dass dieser Weg wirksam ist.

Fast jede Zelle im menschlichen Körper enthält ein "Selbstzerstörungsprogramm" und wartet sozusagen auf das Signal, das ihren Tod auslöst. Krebszellen jedoch haben einen Weg gefunden, dieses Programm auszuschalten. Normalerweise wird der programmierte Zelltod (Apoptose) durch Signale innerhalb oder ausserhalb der Zelle ausgelöst. Innerhalb etwa durch eine Schädigung der DNA durch UV- oder Röntgenstrahlung. Ausserhalb, indem externe Signale wie ein Schlüssel auf ein genau passendes Schloss, sogenannte Todesrezeptoren auf der Zelloberfläche, einwirken. Dieser Schlüssel-Schloss-Mechanismus ist für das Immunsystem äusserst wichtig, um Zellen mit bestimmten Rezeptoren gezielt abtöten zu können.

Bestimmte Zellen sind nun aber für ihre Selbstzerstörung auf einen kombinierten Signal-Weg innerhalb und ausserhalb zugleich angewiesen. Dazu gehören Leberzellen und insulinproduzierende Zellen der Bauchspeicheldrüse. Eine internationale Forschergruppe um Prof. Dr. Andreas Strasser vom "Walter and Eliza Hall Institute of Medical Research" in Melbourne (Australien) und Prof. Dr. Thomas Kaufmann vom Institut für Pharmakologie der Universität Bern hat nun herausgefunden, warum diese Zellen einen eigenen Weg beim Zelltod beschreiten. Durch ihre Untersuchungen haben sie zudem weitere Grundlagen geliefert, die zu einer neuartigen und vielversprechenden medikamentösen Therapie gegen Krebs beitragen könnten. Die Ergebnisse der Studie wurden nun im Fachjournal "Nature" publiziert.

Protein als Auslöser

Ein einziges Protein ist dafür verantwortlich, wenn sich Leber- und bestimmte Bauchspeicheldrüsenzellen "umprogrammieren" - von einem relativ einfachen, extern ausgelösten Zelltod auf einen komplexeren, sowohl extern als auch intern ausgelösten Zelltod. Das entsprechende Protein, XIAP, gehört zur Familie der "inhibitor of apoptosis proteins" (IAP), welche den programmierten Zelltod unterdrücken. Wird XIAP nun selber in Leberzellen und Zellen der Bauchspeicheldrüse unterdrückt, ändert sich der Ablauf des Zelltods. Dies wurde durch genetische Versuche in der Maus gezeigt und durch Versuche mit einem neuartigen pharmakologischen IAP-Unterdrücker, welcher unter anderem XIAP hemmt, bestätigt. Leber- und Bauchspeicheldrüsen-Zellen, in denen wegen dieses Unterdrückers XIAP inaktiv war, schalteten vom "komplexen" auf den "einfachen" Zelltod. Diese Wirkung von solchen IAP-Unterdrückern auf die Zelltod-Hemmer könnte in Zukunft für die Bekämpfung von Krebs von grosser Bedeutung sein.

Den Zelltod-Unterdrücker unterdrücken

Viele Krebszellen weisen erhöhte Mengen an IAP-Proteinen auf und sind deshalb resistent gegenüber Strahlen- oder Chemotherapie. Chemische IAP-Hemmer, die als "Unterdrücker der Zelltod-Unterdrücker" eingesetzt werden, gelten daher als vielversprechender neuer Weg in der Krebstherapie. "Unsere Studie liefert einen weiteren Hinweis darauf, dass IAP-Hemmer für den Zelltod-Start in bestimmten Zellen sehr wirksam sind", erklärt Thomas Kaufmann. Man müsse sie aber vorsichtig einsetzen, da sie auch gesunde Zellen für Zelltod sensibilisieren können. Dies scheint gerade in Leberzellen der Fall zu sein, weshalb Vorsicht geboten sei bei bereits bestehenden Leberschäden: "IAP-Proteine verhindern den Zelltod von Leberzellen - hemmt man sie, könnte dies gefährlich werden für Personen, die bereits unter Leberproblemen leiden", so Kaufmann.

Quellenangabe:
Philipp J. Jost, Stephanie Grabow, Daniel Gray, Mark D. McKenzie, Ueli
Nachbur, David C.S. Huang, Philippe Bouillet, Helen E. Thomas, Christoph
Borner, John Silke, Andreas Strasser, and Thomas Kaufmann: XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, 22. Juli 2009, doi: 10.1038/nature08229

Nathalie Matter | idw
Weitere Informationen:
http://www.medienmitteilungen.unibe.ch
http://www.pki.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie