Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zellen ihren Müll entsorgen

24.01.2012
Max-Planck-Forscher entschlüsseln die Struktur der zellulären Proteinabbau-Maschinerie

Werden fehlerhafte Proteine nicht vom Körper abgebaut, können sie Krankheiten wie Alzheimer oder Parkinson verursachen. Wissenschaftlern am Max-Planck-Institut (MPI) für Biochemie ist es kürzlich gelungen, die Struktur der zellulären Proteinabbau-Maschinerie (26S-Proteasom) mit Hilfe einer Kombination aus verschiedenen strukturbiologischen Methoden aufzuklären.


Rekonstruktion des 26S-Proteasoms: Das „Regulatorische Partikel“ (blau) erkennt die mit Ubiquitin markierten Proteine und bereitet sie für den Abbau vor. Das Kernpartikel (rot) zerlegt die Proteine in ihre Bestandteile. Grafik: Julio Ortiz / Copyright: MPI für Biochemie

Die Ergebnisse des Gemeinschaftsprojekts mit Kollegen der University of California San Francisco und der Eidgenössischen Technischen Hochschule Zürich sind ein wichtiger Schritt für die weitere Erforschung des 26S-Proteasoms. Sie wurden jetzt in Proceedings of the National Academy of Sciences PNAS veröffentlicht.

In einer Zelle dürfen zu einem bestimmten Zeitpunkt ihrer Entwicklung nur die Proteine vorhanden sein, die sie gerade benötigt. Andernfalls können unerwünschte Reaktionen auftreten, die beispielsweise zu Krebs führen können. Außerdem müssen die Proteine die korrekte Form aufweisen, um ihre Aufgaben erfüllen zu können. Sind sie falsch gefaltet, können sie verklumpen und neurodegenerative Krankheiten wie Alzheimer oder Parkinson die Folge sein. Um das zu verhindern, verfügt der Körper über verschiedene Mechanismen, die den Proteinhaushalt regulieren und wenn nötig Proteine abbauen.

Eine zentrale Rolle beim Proteinabbau spielt die „zelluläre Müllabfuhr“, das 26S-Proteasom. Fehlgefaltete und potentiell gefährliche Proteine werden zunächst mit dem zellulären Etikett Ubiquitin verknüpft. Das 26S-Proteasom erkennt die markierten Proteine und zerlegt sie in ihre Bestandteile, die dann wiederverwertet werden. Seine Struktur konnten Wissenschaftler um Wolfgang Baumeister, Leiter der Forschungsabteilung Molekulare Strukturbiologie am MPI für Biochemie, jetzt entschlüsseln.

Viele Puzzleteile führen zur Struktur

„Die Struktur des 26S-Proteasoms ändert sich laufend“, erklärt Friedrich Förster, Leiter der Forschungsgruppe Modellierung von Proteinkomplexen am MPI für Biochemie. „Daher konnte sie mit Hilfe traditioneller Ansätze wie etwa der Röntgenkristallographie allein bisher nicht aufgeklärt werden. Erst die Kombination verschiedener Methoden brachte den Erfolg.“ Die Elektronenmikroskopie und die Massenspektrometrie halfen dabei, den groben Aufbau des 26S-Proteasoms zu entschlüsseln. Die Röntgenkristallographie gewährte detaillierte Einblicke in einzelne Bereiche des Moleküls. Am Computer setzten die Forscher die unterschiedlichen Daten dann zu einem Gesamtbild zusammen.

Basierend auf diesen Ergebnissen wollen die Forscher künftig untersuchen, wie die verschiedenen Mechanismen des Proteinabbaus funktionieren. „Wir haben bereits eine Hypothese entwickelt, wie genau das 26S-Proteasom markierte Proteine erkennt und weiterverarbeitet“, so Stefan Bohn, Wissenschaftler am MPI für Biochemie. Die vollständige Aufklärung des 26S-Proteasoms und der zugrunde liegenden Mechanismen könnte auch von medizinischer Bedeutung sein: Die „zelluläre Müllabfuhr“ ist ein denkbarer therapeutischer Ansatzpunkt bei Krebs und neurodegenerativen Krankheiten.
Originalveröffentlichungen:

Lasker, K. et al.: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.
Proc. Natl. Acad. Sci. USA, 24. Januar 2012.DOI: 10.1073/pnas.1120559109.

Pathare, G. R. et al.: The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together.
Proc. Natl. Acad. Sci. USA, 03. Januar 2012.
DOI: 10.1073/pnas.1117648108.

Sakata, E. et al.: Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA, 3. Januar 2012. DOI: 10.1073/pnas.1119394109.

Kontakt:

Prof. Dr. Wolfgang Baumeister
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: baumeist@biochem.mpg.de
www.biochem.mpg.de/baumeister

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltwasserkorallen: Versauerung schadet, Wärme hilft
27.04.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie