Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unsere Körperzellen gegen Viren kämpfen

22.04.2014

MolekularbiologInnen der Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien zeigen in Zusammenarbeit mit der ETH Zürich, wie das Eindringen doppelsträngiger RNA in den Zellkern verhindert wird. Während der Immunantwort auf eine Virusinfektion wandert das körpereigene Protein ADAR1 aus dem Kern ins Zytoplasma der Zelle, wo es die Virus-RNA so verändert, dass sich damit keine neuen Viren bilden können. Wie dabei jedoch verhindert wird, dass ADAR1 die virale RNA in den Zellkern bringt, war bisher völlig unklar. In ihrer Studie in PNAS Plus geben die Wiener und Züricher WissenschaftlerInnen eine erste Antwort auf diese Frage.

Das menschliche Immunsystem und die Abwehr von Keimen


Modell der RNA Bindedomäne von ADAR1 (in grün), mit gebundener doppelsträngiger RNA (gelb).

Copyright: PNAS


Die Bindung von RNA behindert den Import von ADAR1 in den Zellkern

Copyright: Michael Jantsch

Der Mensch wird ständig von Bakterien und Viren angegriffen. Mit dem Immunsystem hat der Körper jedoch eine Reihe von Abwehrmechanismen geschaffen, die helfen, solche Angreifer abzuwehren und zu bekämpfen. Viren sind kleine Partikel, die außerhalb einer Wirtszelle nicht lebensfähig sind.

Dringen sie in unseren Körper ein, geben sie ihr genetisches Material in unsere Zellen ab um sich zu vermehren. Genau hier greift einer der körpereigenen Abwehrmechanismen an: das Erbgut des Virus wird durch zelluläre Enzyme chemisch so verändert, dass keine neuen lebensfähigen Viren gebildet werden können.

ADAR1 – eine Waffe des Immunsystems gegen Viren

ADAR1 ist eines der Enzyme der antiviralen Immunantwort. Normalerweise hält es sich im Kern der Zelle auf. Wird jedoch virale doppelsträngige RNA im Zytoplasma der Zelle entdeckt, wandert ADAR1 ins Zytoplasma, wo es die virale RNA bindet und chemisch modifiziert, sodass sie für das Virus und des Vermehrung unbrauchbar wird. Wie wird jedoch verhindert, dass ADAR1 die gebundene virale RNA mit in den Zellkern nimmt? Dort befindet sich schließlich das menschliche Erbgut, welches es zu schützen gilt. Dieser Frage gingen nun die Teams von Michael Jantsch an den Max F. Perutz Laboratories (MFPL) der Universität Wien und Frédéric Allain von der ETH Zürich nach.

Dabei stellte sich heraus, dass ADAR1 zwei Module verbindet, welche den Kerntransport regulieren. Durch zellbiologische Untersuchungen konnten die Wiener WissenschaftlerInnen um Michael Jantsch wiederum zeigen, dass ein Transport von ADAR1 in den Kern nur möglich ist, wenn die RNA-Bindedomäne als Verbindung die Strukturmodule für den Kerntransport in die richtige Position bringt. Michael Jantsch erklärt: "Entfernten wir die RNA-Bindedomäne, konnte ADAR1 nicht mehr in den Zellkern wandern. Dasselbe ist aber auch der Fall, wenn es virale doppelsträngige RNA gebunden hat. Mithilfe der WissenschaftlerInnen an der ETH konnten wir zeigen, wie dieser molekulare Schalter strukturell aufgebaut ist".

Welche RNAs betätigen den Schalter von ADAR1?

Hat ADAR1 RNA gebunden, versperrt diese den Zugang zum Kern: die Kerntransportmodule können nicht an ihren Partner, welcher den Durchgang durch die Kernhülle veranlasst, binden, da die RNA dies räumlich unmöglich macht. "Das ist ein Mechanismus, der bisher völlig unbekannt war. Man kann sich das in etwa so vorstellen, als wolle man mit dem Auto in ein Parkhaus fahren. Um die Schranke zu öffnen, muss man zuerst ein Ticket durch Knopfdruck am Automaten ziehen. Transportiert man nun zusätzlich etwas Sperriges auf dem Autodach, kann man nicht mehr nah genug an den Automaten heranfahren um dem Ticketschalter zu betätigen, da sonst Transportgut und Automat zusammenstoßen", erläutert Michael Jantsch.

In der Folge wollen er und sein Team herausfinden, welche RNAs genau diesen "Schalter" von ADAR1 betätigen – also von ADAR1 gebunden und modifiziert werden und es am Rückgang in den Zellkern hindern. Zudem sind die ForscherInnen gespannt, ob und welche weiteren Proteine sie finden werden, deren Lokalisierung in der Zelle über RNA gesteuert wird.

Publikation in PNAS Plus:
Pierre Barraud, Silpi Banerjee, Weaam I. Mohamed, Michael F. Jantsch and Frédéric H.-T. Allain: A bimodular nuclear localization signal assembled via an extended dsRBD acts as an RNA-sensing signal for Transportin 1.
In: PNAS Plus (April 2014).
DOI: www.pnas.org/cgi/doi/10.1073/pnas.1323698111

Wissenschaftlicher Kontakt:
Ao. Univ.-Prof. Dr. Michael Jantsch
Department für Chromosomenbiologie
Max F. Perutz Laboratories
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-562 30
michael.jantsch@univie.ac.at

Rückfragehinweise:
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@mfpl.ac.at

Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften