Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unsere Körperzellen gegen Viren kämpfen

22.04.2014

MolekularbiologInnen der Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien zeigen in Zusammenarbeit mit der ETH Zürich, wie das Eindringen doppelsträngiger RNA in den Zellkern verhindert wird. Während der Immunantwort auf eine Virusinfektion wandert das körpereigene Protein ADAR1 aus dem Kern ins Zytoplasma der Zelle, wo es die Virus-RNA so verändert, dass sich damit keine neuen Viren bilden können. Wie dabei jedoch verhindert wird, dass ADAR1 die virale RNA in den Zellkern bringt, war bisher völlig unklar. In ihrer Studie in PNAS Plus geben die Wiener und Züricher WissenschaftlerInnen eine erste Antwort auf diese Frage.

Das menschliche Immunsystem und die Abwehr von Keimen


Modell der RNA Bindedomäne von ADAR1 (in grün), mit gebundener doppelsträngiger RNA (gelb).

Copyright: PNAS


Die Bindung von RNA behindert den Import von ADAR1 in den Zellkern

Copyright: Michael Jantsch

Der Mensch wird ständig von Bakterien und Viren angegriffen. Mit dem Immunsystem hat der Körper jedoch eine Reihe von Abwehrmechanismen geschaffen, die helfen, solche Angreifer abzuwehren und zu bekämpfen. Viren sind kleine Partikel, die außerhalb einer Wirtszelle nicht lebensfähig sind.

Dringen sie in unseren Körper ein, geben sie ihr genetisches Material in unsere Zellen ab um sich zu vermehren. Genau hier greift einer der körpereigenen Abwehrmechanismen an: das Erbgut des Virus wird durch zelluläre Enzyme chemisch so verändert, dass keine neuen lebensfähigen Viren gebildet werden können.

ADAR1 – eine Waffe des Immunsystems gegen Viren

ADAR1 ist eines der Enzyme der antiviralen Immunantwort. Normalerweise hält es sich im Kern der Zelle auf. Wird jedoch virale doppelsträngige RNA im Zytoplasma der Zelle entdeckt, wandert ADAR1 ins Zytoplasma, wo es die virale RNA bindet und chemisch modifiziert, sodass sie für das Virus und des Vermehrung unbrauchbar wird. Wie wird jedoch verhindert, dass ADAR1 die gebundene virale RNA mit in den Zellkern nimmt? Dort befindet sich schließlich das menschliche Erbgut, welches es zu schützen gilt. Dieser Frage gingen nun die Teams von Michael Jantsch an den Max F. Perutz Laboratories (MFPL) der Universität Wien und Frédéric Allain von der ETH Zürich nach.

Dabei stellte sich heraus, dass ADAR1 zwei Module verbindet, welche den Kerntransport regulieren. Durch zellbiologische Untersuchungen konnten die Wiener WissenschaftlerInnen um Michael Jantsch wiederum zeigen, dass ein Transport von ADAR1 in den Kern nur möglich ist, wenn die RNA-Bindedomäne als Verbindung die Strukturmodule für den Kerntransport in die richtige Position bringt. Michael Jantsch erklärt: "Entfernten wir die RNA-Bindedomäne, konnte ADAR1 nicht mehr in den Zellkern wandern. Dasselbe ist aber auch der Fall, wenn es virale doppelsträngige RNA gebunden hat. Mithilfe der WissenschaftlerInnen an der ETH konnten wir zeigen, wie dieser molekulare Schalter strukturell aufgebaut ist".

Welche RNAs betätigen den Schalter von ADAR1?

Hat ADAR1 RNA gebunden, versperrt diese den Zugang zum Kern: die Kerntransportmodule können nicht an ihren Partner, welcher den Durchgang durch die Kernhülle veranlasst, binden, da die RNA dies räumlich unmöglich macht. "Das ist ein Mechanismus, der bisher völlig unbekannt war. Man kann sich das in etwa so vorstellen, als wolle man mit dem Auto in ein Parkhaus fahren. Um die Schranke zu öffnen, muss man zuerst ein Ticket durch Knopfdruck am Automaten ziehen. Transportiert man nun zusätzlich etwas Sperriges auf dem Autodach, kann man nicht mehr nah genug an den Automaten heranfahren um dem Ticketschalter zu betätigen, da sonst Transportgut und Automat zusammenstoßen", erläutert Michael Jantsch.

In der Folge wollen er und sein Team herausfinden, welche RNAs genau diesen "Schalter" von ADAR1 betätigen – also von ADAR1 gebunden und modifiziert werden und es am Rückgang in den Zellkern hindern. Zudem sind die ForscherInnen gespannt, ob und welche weiteren Proteine sie finden werden, deren Lokalisierung in der Zelle über RNA gesteuert wird.

Publikation in PNAS Plus:
Pierre Barraud, Silpi Banerjee, Weaam I. Mohamed, Michael F. Jantsch and Frédéric H.-T. Allain: A bimodular nuclear localization signal assembled via an extended dsRBD acts as an RNA-sensing signal for Transportin 1.
In: PNAS Plus (April 2014).
DOI: www.pnas.org/cgi/doi/10.1073/pnas.1323698111

Wissenschaftlicher Kontakt:
Ao. Univ.-Prof. Dr. Michael Jantsch
Department für Chromosomenbiologie
Max F. Perutz Laboratories
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-562 30
michael.jantsch@univie.ac.at

Rückfragehinweise:
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@mfpl.ac.at

Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das große Aufräumen nach dem Stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics