Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Plankton Turbulenzen meistert

16.03.2017

Plankton treibt nicht einfach hilflos im Meer. Es kann Signale, die Turbulenzen ankündigen, wahrnehmen, sein Verhalten anpassen und aktiv darauf reagieren. Wie es das tut, zeigen ETH-Forscher erstmals im Detail auf.

Plankton im Meer ist auf steter Wanderschaft. Bei Tage schwimmen die winzigen Lebewesen mithilfe von Flagellen aktiv an die lichtdurchflutete Meeresoberfläche, wo sie Photosynthese betreiben. Nachts begeben sie sich in eine Tiefe von 10 bis 20 Meter, wo die Nährstoffversorgung besser ist und wo sie vor Fressfeinden sicherer sind.


Nimmt aufwärts schwimmendes Plankton Signale von Turbulenzen wahr, teil sich die Population: Abwärts schwimmende Zellen werden eiförmig, aufwärts schwimmende eher birnenförmig.

Bild: ETH Zürich / A. Sengupta, G. Gorick, F. Carrara, R.Stocker

Auf seiner täglichen Wanderschaft begegnet das Plankton aber einigen Widrigkeiten. So muss es auf seinem Weg nach oben (oder unten) Wasserschichten mit Turbulenzen durchqueren.

Diese Turbulenzen – insbesondere kleine Verwirbelungen im Millimeterbereich – können den Mikroorganismen gefährlich werden: Plankton wird darin herumgewirbelt wie in einer winzigen Waschmaschine. Dies kann beispielsweise Antriebsorgane oder Zellhüllen stark schädigen. Im schlimmsten Fall können die Organismen in den Verwirbelungen zugrunde gehen.

Wanderverhalten in Mikrokammern beobachtet

Bestimmte Algen des Phytoplanktons haben allerdings raffinierte Mechanismen entwickelt, um den Totalverlust ihres Bestands zu vermeiden. Das zeigen die Postdoktoranden Anupam Sengupta und Francesco Carrara und Roman Stocker, Professor am Institut für Umweltingenieurwissenschaften der ETH Zürich, in einer Studie, die soeben in der Fachzeitschrift Nature erschienen ist.

Die drei Wissenschaftler untersuchten im Labor das Wanderverhalten von Heterosigma akashiwo, einer Alge, die bekannt dafür ist, dass sie giftige Algenblüten bildet. Um das Schwimmverhalten der Alge zu untersuchen, verwendeten die Forscher eine kleine Kammer von wenigen Kubikmillimetern Volumen, in welche sie Heterosigma-Zellen einbrachten.

Die Kammer konnte mit einem computergesteuerten Motor kontinuierlich um ihre horizontale Achse rotiert und so wiederholt um 180 Grad gekippt werden. Auf diese Weise konnten die Wissenschaftler imitieren, wie kleinste Ozeanwirbel die Zellen im Wasser auf den Kopf stellen.

Abtauchen in weiser Voraussicht

Dabei konnten die Wissenschaftler beobachten, dass sich die aufsteigende Algenpopulation in zwei gleich grosse Gruppen teilt. Die einen Zellen streben weiterhin zur Oberfläche, die anderen hingegen schwimmen in die entgegengesetzte Richtung. In einer unbewegten Kammer hingegen schwammen alle Zellen nach oben.

Die Forscher haben auch den Grund für das unterschiedliche Schwimmverhalten entdeckt: Die Zellen können ihre Form aktiv verändern. Abwärts schwimmende Zellen werden nahezu eiförmig, aufwärts schwimmende Algenzellen hingegen sind eher birnenförmig. Die Abweichung beträgt nur knapp einen Mikrometer. «Das ist spektakulär, dass eine knapp 10 Mikrometer grosse Zelle ihre Form anpassen kann, um ihre Schwimmrichtung zu verändern», sagt der Mitautor der Studie Francesco Carrara.

Perfekte Anpassung

Für Roman Stocker ist der beobachtete Mechanismus nicht einfach Zufall. «Die Alge hat sich perfekt an ihren Lebensraum Ozean angepasst: Sie kann aktiv schwimmen, eine Reihe verschiedener Umweltsignale wahrnehmen, ihr Verhalten entsprechend anpassen und regulieren.» Anupam Sengupta ergänzt: «Wir verstehen nun besser, wie die Mikroorganismen potenziell gefährlichen Situationen begegnen, aber zur Zeit können wir nur darüber spekulieren, weshalb sie das tun.»

So stellen sich die Forscher vor, dass das Teilen der Population in zwei Gruppen der Art einen evolutiven Vorteil verschafft. Bei gefährlichen Turbulenzen geht im schlimmsten Fall nicht die gesamte Population verloren, sondern nur die halbe. Die abwärtsschwimmenden Zellen haben dafür den kurzfristigen Nachteil, dass sie in der Tiefe zu wenig Licht für die Photosynthese erhalten und nicht wachsen können. Die Forscher haben zudem Hinweise darauf, dass Signale, die von Turbulenzen ausgehen, die Alge physiologisch belasten. Zellen, die in ihrem Experiment umhergewirbelt wurden, erlitten mehr Stress als solche in ruhenden Kammern.

Klimawandel beeinflusst Turbulenzen

Die Forscher planen nun, das Verhalten der Algen in einem grösseren Tank zu beobachten, wo die Algen nicht nur dem «Kippen» ausgesetzt werden, sondern echten Turbulenzen. Das Verhalten des Planktons genau zu kennen, ist wichtig: «Da der Klimawandel die Intensität der Turbulenzen in den Ozeanen je nach Region verändern wird, müssen wir unbedingt verstehen, wie Organismen, welche die Basis für die gesamte Nahrungskette bilden, darauf reagieren. Unsere Studie fügt diesem komplexen Puzzle ein neues Teilchen hinzu, indem sie nachweist, dass Phytoplankton den Turbulenzen nicht einfach ausgeliefert ist, sondern diese aktiv meistern kann», betont der ETH-Professor.

Literaturhinweis

Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in re-sponse to turbulent cues. Nature, Advance Online Publication 15 March 2017. doi:10.1038/nature21415

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/03/wie-plankt...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics