Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Plankton Turbulenzen meistert

16.03.2017

Plankton treibt nicht einfach hilflos im Meer. Es kann Signale, die Turbulenzen ankündigen, wahrnehmen, sein Verhalten anpassen und aktiv darauf reagieren. Wie es das tut, zeigen ETH-Forscher erstmals im Detail auf.

Plankton im Meer ist auf steter Wanderschaft. Bei Tage schwimmen die winzigen Lebewesen mithilfe von Flagellen aktiv an die lichtdurchflutete Meeresoberfläche, wo sie Photosynthese betreiben. Nachts begeben sie sich in eine Tiefe von 10 bis 20 Meter, wo die Nährstoffversorgung besser ist und wo sie vor Fressfeinden sicherer sind.


Nimmt aufwärts schwimmendes Plankton Signale von Turbulenzen wahr, teil sich die Population: Abwärts schwimmende Zellen werden eiförmig, aufwärts schwimmende eher birnenförmig.

Bild: ETH Zürich / A. Sengupta, G. Gorick, F. Carrara, R.Stocker

Auf seiner täglichen Wanderschaft begegnet das Plankton aber einigen Widrigkeiten. So muss es auf seinem Weg nach oben (oder unten) Wasserschichten mit Turbulenzen durchqueren.

Diese Turbulenzen – insbesondere kleine Verwirbelungen im Millimeterbereich – können den Mikroorganismen gefährlich werden: Plankton wird darin herumgewirbelt wie in einer winzigen Waschmaschine. Dies kann beispielsweise Antriebsorgane oder Zellhüllen stark schädigen. Im schlimmsten Fall können die Organismen in den Verwirbelungen zugrunde gehen.

Wanderverhalten in Mikrokammern beobachtet

Bestimmte Algen des Phytoplanktons haben allerdings raffinierte Mechanismen entwickelt, um den Totalverlust ihres Bestands zu vermeiden. Das zeigen die Postdoktoranden Anupam Sengupta und Francesco Carrara und Roman Stocker, Professor am Institut für Umweltingenieurwissenschaften der ETH Zürich, in einer Studie, die soeben in der Fachzeitschrift Nature erschienen ist.

Die drei Wissenschaftler untersuchten im Labor das Wanderverhalten von Heterosigma akashiwo, einer Alge, die bekannt dafür ist, dass sie giftige Algenblüten bildet. Um das Schwimmverhalten der Alge zu untersuchen, verwendeten die Forscher eine kleine Kammer von wenigen Kubikmillimetern Volumen, in welche sie Heterosigma-Zellen einbrachten.

Die Kammer konnte mit einem computergesteuerten Motor kontinuierlich um ihre horizontale Achse rotiert und so wiederholt um 180 Grad gekippt werden. Auf diese Weise konnten die Wissenschaftler imitieren, wie kleinste Ozeanwirbel die Zellen im Wasser auf den Kopf stellen.

Abtauchen in weiser Voraussicht

Dabei konnten die Wissenschaftler beobachten, dass sich die aufsteigende Algenpopulation in zwei gleich grosse Gruppen teilt. Die einen Zellen streben weiterhin zur Oberfläche, die anderen hingegen schwimmen in die entgegengesetzte Richtung. In einer unbewegten Kammer hingegen schwammen alle Zellen nach oben.

Die Forscher haben auch den Grund für das unterschiedliche Schwimmverhalten entdeckt: Die Zellen können ihre Form aktiv verändern. Abwärts schwimmende Zellen werden nahezu eiförmig, aufwärts schwimmende Algenzellen hingegen sind eher birnenförmig. Die Abweichung beträgt nur knapp einen Mikrometer. «Das ist spektakulär, dass eine knapp 10 Mikrometer grosse Zelle ihre Form anpassen kann, um ihre Schwimmrichtung zu verändern», sagt der Mitautor der Studie Francesco Carrara.

Perfekte Anpassung

Für Roman Stocker ist der beobachtete Mechanismus nicht einfach Zufall. «Die Alge hat sich perfekt an ihren Lebensraum Ozean angepasst: Sie kann aktiv schwimmen, eine Reihe verschiedener Umweltsignale wahrnehmen, ihr Verhalten entsprechend anpassen und regulieren.» Anupam Sengupta ergänzt: «Wir verstehen nun besser, wie die Mikroorganismen potenziell gefährlichen Situationen begegnen, aber zur Zeit können wir nur darüber spekulieren, weshalb sie das tun.»

So stellen sich die Forscher vor, dass das Teilen der Population in zwei Gruppen der Art einen evolutiven Vorteil verschafft. Bei gefährlichen Turbulenzen geht im schlimmsten Fall nicht die gesamte Population verloren, sondern nur die halbe. Die abwärtsschwimmenden Zellen haben dafür den kurzfristigen Nachteil, dass sie in der Tiefe zu wenig Licht für die Photosynthese erhalten und nicht wachsen können. Die Forscher haben zudem Hinweise darauf, dass Signale, die von Turbulenzen ausgehen, die Alge physiologisch belasten. Zellen, die in ihrem Experiment umhergewirbelt wurden, erlitten mehr Stress als solche in ruhenden Kammern.

Klimawandel beeinflusst Turbulenzen

Die Forscher planen nun, das Verhalten der Algen in einem grösseren Tank zu beobachten, wo die Algen nicht nur dem «Kippen» ausgesetzt werden, sondern echten Turbulenzen. Das Verhalten des Planktons genau zu kennen, ist wichtig: «Da der Klimawandel die Intensität der Turbulenzen in den Ozeanen je nach Region verändern wird, müssen wir unbedingt verstehen, wie Organismen, welche die Basis für die gesamte Nahrungskette bilden, darauf reagieren. Unsere Studie fügt diesem komplexen Puzzle ein neues Teilchen hinzu, indem sie nachweist, dass Phytoplankton den Turbulenzen nicht einfach ausgeliefert ist, sondern diese aktiv meistern kann», betont der ETH-Professor.

Literaturhinweis

Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in re-sponse to turbulent cues. Nature, Advance Online Publication 15 March 2017. doi:10.1038/nature21415

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/03/wie-plankt...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics