Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Hefezellen ihren Fetthaushalt regulieren

21.06.2016

Wie Hefezellen die Verfügbarkeit von Fetten in der Nahrung messen und die Produktion ihrer Membranfette daran anpassen, hat eine Frankfurter Forschergruppe der Goethe Universität und des Max-Planck Instituts für Biophysik herausgefunden. Damit eröffnen sich neue Möglichkeiten, die Produktion und Verteilung verschiedenster Fettsäuren und Cholesterin in den Zellen unseres Körpers besser zu verstehen und in Zukunft kontrollierbar zu machen, berichten die Forscher in der aktuellen Ausgabe des Journals „Molecular Cell“.

Nicht nur der Mensch, sondern jede seiner Körperzellen muss auf ihren Fetthaushalt achten. Insbesondere in der Zellmembran erfüllen Fette hoch spezialisierte Funktionen. Wie Hefezellen die Verfügbarkeit von Fetten in der Nahrung messen und die Produktion ihrer Membranfette daran anpassen, hat eine Frankfurter Forschergruppe am Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) der Goethe Universität zusammen mit Kollegen am Max-Planck Institut für Biophysik jetzt herausgefunden. Damit eröffnen sich neue Möglichkeiten, die Produktion und Verteilung verschiedenster Fettsäuren und Cholesterin in den Zellen unseres Körpers besser zu verstehen und in Zukunft kontrollierbar zu machen, berichten die Forscher in der aktuellen Ausgabe des Journals „Molecular Cell“.


Die Membran aus gesättigten Membranfetten aktiviert den Sensor (grün) und regt die Synthese ungesättigter Fettsäuren an. In den locker gepackten ungesättigten Membranfette bleibt der Sensor inaktiv.

Robert Ernst

Ein Blick in das Kühlregal des Supermarktes zeigt: Wenig Fett, weniger Fett und gar kein Fett liegen im Trend. Doch Fette sind essentiell für das Überleben unserer Zellen, denn sie bilden das Grundgerüst der biologischen Membranen, welche die Zelle nach außen hin abgrenzen und nach innen in Funktionseinheiten unterteilen. So können gegenläufige Prozesse wie der Aufbau von Energiespeichern und die Fettverbrennung getrennt voneinander in derselben Zelle ablaufen.

„Die Membranfette haben eine Vielzahl lebenswichtiger, zellulärer Funktionen. Sie beeinflussen die Signalübertragung zwischen den Zellen, aber auch innerhalb einer Zelle“, erklärt Prof. Robert Ernst, dessen Forschergruppe am BMLS den versteckten Funktionen der Fette schon seit Jahren auf der Spur ist. „Hormon-produzierende Zellen sind besonders anfällig und haben oft Schwierigkeiten, ihren Fettsäuregehalt zu regulieren. Eine Störung dieser Regulation kann aber zum Zelltod führen und - je nach Zelltyp - Krankheiten wie Diabetes auslösen.“

Die ersten Beobachtungen, dass Lebewesen wie Bakterien ihre Fettsäureproduktion an veränderte Umgebungstemperaturen anpassen können, liegen bereits einige Jahrzehnte zurück. Doch bis vor kurzem rätselten Forscher, wie höhere Organismen, zu denen auch Hefepilze gehören, den Anteil gesättigter und ungesättigter Fettsäuren messen und regulieren. Gefördert durch die Deutsche Forschungsgemeinschaft und die Max-Planck Gesellschaft haben die Arbeitsgruppe um Robert Ernst und Gerhard Hummer vom Max-Planck Institut für Biophysik diese fundamental wichtige Frage erforscht.

Um den Wirkmechanismus eines Membransensors beschreiben zu können, der den Sättigungsgrad im Hefepilz misst, verwendeten die Wissenschaftler einerseits gentechnische und biochemische Methoden. Andererseits simulierten sie die Bewegung von Membranfetten und die dabei wirkenden Kräfte über den Zeitraum von einigen Millisekunden durch umfangreiche molekulardynamische Simulationen.

Wie sie herausfanden, basiert der Mechanismus auf zwei Zylinder-förmigen Strukturen, die sich in biologischen Membranen aneinander lagern. Sie besitzen je eine raue und eine glatte Oberfläche und drehen sich umeinander, wie wenn man zwei Finger in einen Kuchenteig steckt, um durch Drehen zu erfühlen, ob genug Butter darin ist. Da sich gesättigte Membranfette nicht ideal an die raue Oberfläche anlagern können, ungesättigte Fette diese allerdings bevorzugen, ändert sich die Struktur des Fettsensors, wenn ein hoher Anteil gesättigter Membranfette vorliegt. Diese Strukturänderung erlaubt es dann, die Synthese ungesättigter Fettsäuren zu aktivieren.

„Diese Erkenntnis ist ein Türöffner für viele weitere Studien“, prognostiziert Robert Ernst „Mit dem Wissen über diesen subtilen Mechanismus im Hefepilz können wir jetzt zielgerichtet nach weiteren Sensoren suchen, welche die Produktion und Verteilung verschiedenster Fettsäuren und Cholesterin in unserem Körper überwachen und kontrollieren.“ Im Hinblick auf das weitreichende Potential der gewonnenen Erkenntnisse, soll demnächst unter der Mitarbeit der Frankfurter Forscher eine internationale Konferenz organisiert werden, die sich speziell mit der Regulation von Fettsäuren in Membranlipiden beschäftigt. Die Organisatoren erwarten, dass vielfältigen Funktionen der Membranfette künftig unter einem neuen Blickwinkel gesehen werden und dass Hormon-produzierende Zellen gezielter unterstützt werden können.

Publikation:
Roberto Covino, Stephanie Ballweg, Claudius Stordeur, Jonas B. Michaelis, Kristina Puth, Florian Wernig, Amir Bahrami, Andreas M. Ernst, Gerhard Hummer, und Robert Ernst: A Eukaryotic Sensor for Membrane Lipid Saturation, Molecular Cell (2016), http://dx.doi.org/10.1016/j.molcel.2016.05.015

Eine Grafik zum Download finden Sie hier: http://www.muk.uni-frankfurt.de/62062979?

Bildtext: Während eine Membran aus gesättigten Membranfetten den Sensor aktiviert (grün) und die Synthese ungesättigter Fettsäuren anregt, führt die lockere Packung der ungesättigten Membranfette zur Inaktivierung des Sensors. Dabei drehen sich die Zylinder-förmigen Messfühler in der Membran überaus leichtgängig gegeneinander, so dass ihre raue Oberfläche entweder nach innen (grün) oder nach außen (rot) zeigt. Der Kampf von David, ein Membranfett von 800 Dalton (1 Dalton entspricht der Masse von einem Wasserstoffatom) gegen Goliath, ein Sensor von 120.000 Dalton, wird durch kollektive Kräfte in der Membran (blaue Pfeile) entschieden.
Urheber: Robert Ernst

Ein Video der tanzenden Fettsensoren finden Sie hier:
https://www.youtube.com/watch?v=qFxevhxVDdY

Beschreibung:
Tanzende Lipid-Sensoren in einer Membran des Hefepilzes
Seit Jahrzehnten fragen sich Forscher, wie Zellen das Verhältnis von gesättigten und ungesättigten Fettsäuren in ihren Zellmembranen messen. Die Antwort ist denkbar einfach: Durch tänzerischen Bewegungen werden physikalische Eigenschaften der Membran erfühlt, die durch das Verhältnis der Fettsäuren bestimmt werden.
Urheber der Simulation: Dr. Roberto Covino (MPI of Biophysics)
Musik: Barcarolle aus „Hoffmanns Erzählungen“ von Jacques Offenbach.
Quelle: www.sonofind.com

Informationen: Prof. Robert Ernst, Buchmann Institut für Molekulare Lebenswissenschaften, Campus Riedberg, Tel.: (069) 798-42524, ernst@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Herausgeber: Die Präsidentin
Abteilung PR & Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main
Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531,
E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Fetthaushalt Fettsäuren Hefezellen Membran Molecular Cell Sensor Synthese Zelle Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzym mit überraschender Doppelfunktion
24.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Flexibilität und Ordnung - die Wechselwirkung zwischen Ribonukleinsäure und Wasser
24.01.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf

Zum ersten Mal hat eine internationale Forschungsgruppe den Kernmechanismus aufgedeckt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt - dem Schlüsselmaterial für blaue Leuchtdioden (LED). Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu...

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Enzym mit überraschender Doppelfunktion

24.01.2018 | Biowissenschaften Chemie

Neuartiger hoch-produktiver Prozess für robuste Schichten auf flexiblen Materialien

24.01.2018 | Messenachrichten

Neuartiger Sensor zum Messen der elektrischen Feldstärke

24.01.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics