Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die DNA Distanzen überbrückt: Ein neues Verständnis der räumlichen Organisation unseres Erbguts

23.12.2015

Vor 15 Jahren wurde die Entzifferung des menschlichen Genoms gefeiert. Damals hatten die Wissenschaftler die Abfolge der genetischen Buchstaben auf der gesamten DNA bestimmt. Heute ist bekannt, dass dies nur ein erster Schritt war: Außer in ihrer Buchstabenfolge verschlüsselt die DNA ihre Information in der Art und Weise, wie sie im Zellkern gepackt ist. Ein Forscherteam unter Leitung von Ana Pombo vom Max-Delbrück-Centrum hat jetzt mit internationalen Kollegen umfassende 3D-Karten der räumlichen Organisation des Erbguts von embryonalen Stammzellen der Maus bis hin zu voll entwickelten Neuronen erstellt. Diese Karten könnten künftig helfen, an Erbkrankheiten beteiligte Gene aufzuspüren.

Vor nunmehr 15 Jahren wurde die Entzifferung des menschlichen Genoms gefeiert. Damals hatten die Wissenschaftler die Abfolge der genetischen Buchstaben auf der gesamten DNA bestimmt. Mittlerweile ist bekannt, dass dies nur ein erster Schritt auf einer langen Reise war: Außer in ihrer Buchstabenfolge verschlüsselt die DNA ihre Information auch in der Art und Weise, wie sie im Zellkern gepackt ist.


(A) Schematische Darstellung der embryonalen Stammzellen der Maus (ESC) über einen neuronalen Vorläufer (NPC) bis hin zu ausdifferenzierten Nervenzellen (Neurons) (B) Meta-Domänen (metaTADs) werden durch das Clustern von individuellen topologischen Domänen (TADs) bestimmt (C) Teil der Interaktionskarte eines Chromosomes mit Domänen und Meta-Domänen als weiße Boxen dargestellt. (D) Baumhierarchie der Meta-Domänen des kompletten Chromosome 6 in Stammzellen (oben) und neuronalen Vorläuferzellen (unten). Die Farbskala zwischen den Bäumen zeigt ihre lokale Ähnlichkeit. Zwei Beispiele für sehr ähnliche (grüne) und unähnliche (rote) Regionen sind dargestellt. Abb.: M. Schüler/AG Pombo

Ein Forscherteam unter Leitung von Ana Pombo vom Max-Delbrück-Centrum hat jetzt gemeinsam mit internationalen Kollegen aus Italien, Kanada und Großbritannien umfassende 3D-Karten der räumlichen Organisation des Erbguts von embryonalen Stammzellen der Maus bis hin zu voll entwickelten Neuronen erstellt und im Fachmagazin Molecular Systems Biology veröffentlicht. Diese Karten könnten künftig dabei helfen, die an Erbkrankheiten beteiligten Gene aufzuspüren.

Verschiedene Zellen unseres Körpers tragen die gleiche Erbinformation, niedergeschrieben in der Abfolge der genetischen Buchstaben auf der DNA. Seit langem erforschen Wissenschaftler intensiv, wie die auf dem langen DNA-Faden angeordneten Gene gesteuert werden. Denn welche Gene in einer Zelle abgelesen werden, entscheidet darüber, ob aus einer Zelle zum Beispiel eine Haut-, Herz- oder Nervenzelle wird; Fehler bei der Genregulation können zu Krankheiten führen.

Dabei ist klar geworden, dass die lineare Abfolge der DNA-Buchstaben allein nicht ausreicht, um das Genom zu verstehen. „Die dreidimensionale Anordnung der DNA ist ebenfalls sehr wichtig“, sagt Ana Pombo, Leiterin der Arbeitsgruppe Epigenetische Regulation und Chromatinstruktur am MDC. Der DNA-Faden, in Mäusen auf 20 Chromosomenpaare aufgeteilt, ist im Zellkern dicht gepackt. Doch dieses Packen ist nicht zufällig. „Die komplexe räumliche Faltung der DNA der Chromosomen steuert die Aktivität von Genen”, erläutert die Wissenschaftlerin.

Tatsächlich gab es während des letzten Jahrzehnts große Fortschritte bei der Bestimmung der dreidimensionalen Architektur der Chromosomen. So ist mittlerweile bekannt, dass diese in so genannte topologische Domänen unterteilt sind, das heißt in DNA-Abschnitte, die mehr interne Kontakte haben als zu ihren genomischen Nachbarn.

„Bislang wurde jedoch nur die räumliche Struktur in und um diese Domänen bestimmt“, sagt Markus Schüler, Postdoc in Ana Pombos Gruppe am MDC und einer der Erstautoren der Studie. „Es fehlte uns ein vollständiges Bild, wie diese Domänen miteinander interagieren und ob diese Domän-Domän-Interaktionen mit der Genfunktion in Zusammenhang stehen.“

Genau das haben die Forscher vom MDC nun untersucht. Sie haben sich im Detail angesehen, wie die gesamte DNA der Chromosomen gefaltet ist und welche Regionen dabei bevorzugt miteinander interagieren. Als Modell diente ihnen dabei die Entwicklung der Nervenzellen der Maus von embroyonalen Stammzellen über einen Vorläufer bis hin zu ausdifferenzierten Nervenzellen. Für diese drei Zelltypen haben die Forscher Interaktionskarten, so genannte Hi-C-Daten, ausgewertet: Also Daten dazu, welche Regionen sich innerhalb der Chromosomen jeweils berühren .

Auf diese Weise konnten die Forscher für alle Chromosomen in allen drei Zelltypen eine Matrix der Kontakte aufstellen. Dabei haben sie herausgefunden, dass sich die Domänen in den Chromosomen zu größeren Meta-Domänen gruppieren. Dabei, und das ist entscheidend, ist die Faltung nicht zufällig. „Verschiedene Regionen auf einem Chromosom finden zusammen, weil sie etwas gemeinsam haben“, sagt Ana Pombo. „Regionen mit ähnlichen funktionellen Eigenschaften treten miteinander in Kontakt, zum Beispiel Gene, die aktiv sind oder die über denselben Mechanismus reguliert werden.“

Um das zu veranschaulichen, nimmt Ana Pombo einen Faden zur Hand, der die DNA darstellen soll. Damit bildet sie mehrere Schlaufen, an deren Basis sich der Faden immer wieder trifft: „Hier treffen sich die Regionen, die etwas gemeinsam haben.“ Diese Anordnung zu Schlaufen verdeutlicht eine besonders wichtige Erkenntnis: Regionen, zwischen denen auf der linearen DNA sehr große Distanzen liegen, können so räumlich in Kontakt treten. „Wir haben zum ersten Mal diese weitreichenden Kontakte zwischen den Domänen für ganze Chromosomen bestimmt“, sagt Ana Pombo.

Die Forscher konnten diese Interaktionen als eine baumartige Hierarchie von Domänen repräsentieren, die zeigt, wer mit wem in Kontakt steht. Beim Vergleich der Baumdiagramme von den embryonalen Stammzellen, Vorläufern und Nervenzellen beobachteten sie, dass bei der Ausdifferenzierung interessanterweise viele der weitreichenden DNA-Kontakte bestehen bleiben. Andere formieren sich dagegen neu, orientieren sich aber wieder an Gemeinsamkeiten. „Veränderungen der Genaktivität korrelieren mit Veränderungen in der räumlichen Organisation“, bringt Markus Schüler das auf den Punkt.

Die Wissenschaftler vom MDC glauben, dass diese Karte der Kontakte zukünftig helfen könnte, die genetischen Ursachen einiger Krankheiten zu finden. Zum einen könnten damit Translokationen, also Umlagerungen der DNA auf den Chromosomen, ausfindig gemacht werden, die bei einigen Leiden wie Krebs eine Rolle spielen. Zum anderen könnten die für Erbkrankheiten verantwortlichen Gene identifiziert werden. In den letzten Jahren gab es unzählige genomweite Studien, die Mutationen mit verschiedenen Erkrankungen in Verbindung gebracht haben. Bei vielen dieser genetischen Varianten ist allerdings nicht klar, wie sie die jeweilige Krankheit verursachen, zum Beispiel weil sie nicht ein einzelnes Gen treffen, sondern die Interaktion zwischen verschiedenen Genen beeinflussen.

„Unsere Karten erweitern jetzt den Pool der Regionen auf der DNA, die von einer einzelnen Mutation betroffen sein könnten“, sagt Ana Pombo. Für eine Genvariante kann jetzt nachgesehen werden, mit welchen anderen Bereichen auf der DNA sie in Kontakt steht. Die Berliner Forscher wollen als nächstes solche Zusammenhänge für neurologische Erkrankungen wie Autismus und für Skeletterkrankungen untersuchen.

Quelle: Molecular Systems Biology (2015) 11: 852

Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation

James Fraser, Carmelo Ferrai, Andrea M Chiariello, Markus Schueler, Tiago Rito,Giovanni Laudanno, Mariano Barbieri, Benjamin L Moore, Dorothee CA Kraemer,Stuart Aitken, Sheila Q Xie, Kelly J Morris, Masayoshi Itoh, Hideya Kawaji, InesJaeger, Yoshihide Hayashizaki, Piero Carninci, Alistair RR Forrest, , Colin A Semple,Josée Dostie, Ana Pombo, Mario Nicodemi

DOI 10.15252/msb.20156492| Published online 23.12.2015

Weitere Informationen:

http://msb.embopress.org/cgi/doi/10.15252/msb.20156492 (Link zur Studie)
https://insights.mdc-berlin.de/de/2015/12/wie-die-dna-distanzen-ueberbrueckt-ein... (Link zum selben Text, aber mit Foto und Video)

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten