Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein wichtiger Schritt in der Antibiotika-Synthese gelingt im Labor

28.04.2011
Forscher der Universität Tübingen können eine besonders interessante Phase des in der Natur ablaufenden Herstellungsprozesses nachbilden.

Viele antibiotisch wirksame Substanzen werden von Mikroorganismen produziert. Die Biosynthese einiger solcher Antibiotika findet an riesigen multifunktionalen Enzymen, den Polyketidsynthasen (PKS) statt.

Diese Megaenzyme funktionieren wie eine industrielle Fertigungsstraße. Sie binden die Grundbausteine der Antibiotika, fügen diese zusammen und bringen gezielt chemische Veränderungen in die Moleküle ein. Forscher der Universität Tübingen haben jetzt einen wissenschaftlich besonders interessanten Schritt dieses Produktionsverfahrens im Labor nachvollzogen. Am Beispiel des Antibiotikums Kirromycin zeigten sie, dass sich bestimmte Komponenten der Polyketidsynthasen sehr spezifisch erkennen müssen, damit sie ihren Beitrag zur Synthese des Antibiotikums leisten können. Zum anderen gelang es, die Entstehung einer ungewöhnlichen strukturellen Verzweigung an einer bestimmten Stelle des Antibiotikums im Labor nachzuvollziehen. Dieser Erfolg gibt den Forschern Anlass zu der Hoffnung, eines Tages bestimmte Veränderungen in Antibiotika einbringen und damit deren Wirkungsweise beeinflussen zu können.

Diplom-Biologin Ewa Maria Musiol, die Erstautorin der Studie, ist Dokto-randin bei Dr. Tilmann Weber, der eine Nachwuchsgruppe am Interfakultären Institut für Mikrobiologie und Infektionsmedizin in der Abteilung Mikrobiologie/Biotechnologie der Universität Tübingen leitet. Die Arbeit, an der auch Wissenschaftler des Kekulé-Instituts für Organische Chemie und Biochemie der Universität Bonn beteiligt waren, ist in der aktuellen Ausgabe der Fachzeitschrift „Chemistry & Biology“ erschienen.

Die Funktion der Polyketidsynthasen als „Antibiotika-Fertigungsstraße“ spiegelt sich in ihrem molekularen Aufbau wider: Sie bestehen aus einer Anein¬anderreihung enzymatischer Domänen, die fließbandartig die Biosyntheseschritte katalysieren. Um so überraschender war es, als sich vor wenigen Jahren herausstellte, dass es Abweichungen vom Lehrbuchwissen über diese Enzyme gibt. Dr. Tilmann Weber: „Vor einigen Jahren sind die ersten Biosynthesewege gefunden worden, in deren Polyketidsynthasen keine Acyltransferase (AT)-Domänen enthalten sind.“ AT-Domänen sind dafür verantwortlich, dass die Grundbausteine der Polyketid-Antibiotika an das PKS-Megaenzym gebunden werden. Es fanden sich Fälle, in denen externe, eigenständige Enzyme, sogenannte trans-ATs, diese Aufgabe übernahmen.

Bis vor kurzem war allerdings Stand des Wissens, dass solche trans-ATs ausschließlich den Baustein Malonyl-CoA für ihren Beitrag zur Biosynthese verwenden. An einer Position im Molekül des Antibiotikums Kirromycin findet sich jedoch eine Verzweigung, die nicht aus Malonyl-CoA stammen kann. Weil diese Stelle so ungewöhnlich ist, hatte Ewa Maria Musiol sich vorgenommen herauszufinden, welcher Baustein dort verwendet wird und wie der Einbau erfolgt.

Das Ergebnis ist in mehrfacher Hinsicht verblüffend. Die Tübinger Forscher identifizierten in DNA-Sequenzdaten ein diskretes AT-Enzym, dem sie den Namen „KirCII“ gaben. Sie vermuteten, dass KirCII den ungewöhnlichen Baustein Ethylmalonyl-CoA an den richtigen Punkt der Kirromycin-Fertigungslinie bringt und es an eine spezifische Reaktionsstelle, welche die Wissenschaftler ACP5 nennen, bindet. Musiol gelang es in einem aufwendigen Laborverfahren, alle beteiligten Komponenten zu isolieren und den Prozess des Zusammenwirkens im Reagenzglas durchzuführen. Sie konnte nachweisen, dass die externe Acyltransferase KirCII spezifisch ACP5 erkennen kann. Das ebenfalls getestete ACP4, das sich benachbart zu ACP5 in der „Kirromycin-Fertigungslinie“ befindet, wird von KirCII nicht mit Ethymalonyl beladen. Der Prozess ist also zur Überraschung der Forscher hoch spezifisch für Ethylmalonyl-CoA, KirCII und ACP5.

Musiol betont: „Das Faszinierende ist, dass die AT KirCII eben nicht in die ,Antibiotika-Fertigungslinie‘ integriert ist, sondern extern hinzukommt. Wenn es gelingen würde, ACP5 in andere Biosynthesewege zu integrieren, dann könnte man solche Verzweigungen auch in andere Antibiotika einführen. Die dabei entstehenden Modifikationen könnten die Aktivität des neuen Antibiotikums verbessern oder seine Toxizität verringern.“ Und Weber ergänzt: „Im Endeffekt ist das ein ganz neuer Mechanismus, wie Diversität in solchen Molekülen erzeugt werden kann.“

Die Studie: Ewa Maria Musiol, Thomas Härtner, Andreas Kulik, Jana Modenhauer, Jörn Piel, Wolfgang Wohlleben und Tilmann Weber: Supramolecular templating in kirromycin biosynthesis – the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS. Chemistry & Biology, Volume 18, Issue 4, 438-444, 22 April 2011

Die Studie wurde vom Bundesministerium für Bildung und Forschung im Rahmen des Verbundprojektes GenBioCom finanziert.

Kontakt:
Dr. Tilmann Weber
Universität Tübingen
Interfakultäres Institut für Mikrobiologie und Infektionsmedizin
Mikrobiologie/Biotechnologie
Telefon +49 7071 29-78841
E-Mail tilmann.weber[at]biotech.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hessische Rarität bedroht - Lanzettblättrige Glockenblume als eigene und bedrohte Art identifiziert
01.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Umprogrammierte Blutgefäße erleichtern Krebsausbreitung
01.03.2017 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher ahmen molekulares Gedränge nach

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen Bedingungen nun erstmals in künstlichen Vesikeln naturgetreu simulieren. Die Erkenntnisse helfen der Weiterentwicklung von Nanoreaktoren und künstlichen Organellen, berichten die Forscher in der Fachzeitschrift «Small».

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Mit Künstlicher Intelligenz das Gehirn verstehen

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas...

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ – deutschlandweit größte Fachkonferenz 5.-8. März in Würzburg

01.03.2017 | Veranstaltungen

Nebennierentumoren: Radioaktiv markierte Substanzen vermeiden unnötige Operationen

28.02.2017 | Veranstaltungen

350 Onlineforscher_innen treffen sich zur Fachkonferenz General Online Research an der HTW Berlin

28.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ – deutschlandweit größte Fachkonferenz 5.-8. März in Würzburg

01.03.2017 | Veranstaltungsnachrichten

CeBIT 2017: Automatisiertes Fahren: Sicheres Navigieren im Baustellenbereich

01.03.2017 | CeBIT 2017

Hybrid-Speicher mit Marktpotenzial: Batterie-Produktion goes Industrie 4.0

01.03.2017 | Energie und Elektrotechnik