Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Proteinproduzent entschlüsselt

24.10.2013
Göttinger Wissenschaftler an Enthüllung der atomaren Struktur der „RNA Polymerase I“ beteiligt

Wissenschaftler unter Beteiligung der Universität Göttingen haben die dreidimensionale Struktur der RNA Polymerase I bestimmt und so eine wichtige Brücke zwischen der DNA und der Frage, wie unser Körper funktioniert, geschlossen.


Mithilfe von Röntgenstrahlen konnte das Innenleben der RNA Polymerase I auf atomarem Niveau erstmals enthüllt werden.

Grafik: María Moreno-Morcillo

Dazu musste das komplexe Molekül, das seinerseits aus 14 Proteinen zusammengesetzt ist, erst kristallisiert werden. Dadurch konnte mithilfe von Röntgenstrahlen das Innenleben der RNA Polymerase I auf atomarem Niveau enthüllt werden. Die Ergebnisse sind in der renommierten Fachzeitschrift Nature erschienen.

Die Doppelhelix der DNA ist bekannt als Träger unseres Erbguts. Auf molekularer Ebene müssen aus der DNA Proteine hergestellt werden, die die Arbeit in unserem Körper übernehmen: Enzyme verdauen im Magen, Insulin regelt unseren Blutzuckerspiegel. Verantwortlich für die Proteinproduktion in der Zelle ist das Ribosom. Das Bindeglied zwischen DNA und Ribosom ist die sogenannte „RNA Polymerase I“, die mithilfe der DNA den Großteil des Ribosoms herstellt.

Jetzt haben Wissenschaftler unter Beteiligung der Universität Göttingen die dreidimensionale Struktur der RNA Polymerase I bestimmt und so eine wichtige Brücke zwischen der DNA und der Frage, wie unser Körper funktioniert, geschlossen. Dazu musste das komplexe Molekül, das seinerseits aus 14 Proteinen zusammengesetzt ist, erst kristallisiert werden. Dadurch konnte mithilfe von Röntgenstrahlen das Innenleben der RNA Polymerase I auf atomarem Niveau enthüllt werden. Die Ergebnisse sind in der renommierten Fachzeitschrift Nature erschienen.

Als die Wissenschaftler bei der Berechnung der Struktur RNA Polymerase I nach fünf Jahren Forschung nicht weiter kamen, wurde durch die Beteiligung des Kristallographen Dr. Tim Grüne vom Institut für Anorganische Chemie der Universität Göttingen im Jahr 2010 der Stein wieder ins Rollen gebracht: Zusammen mit Dr. Pierre Legrand vom Synchrotron Soleil bei Paris bearbeitete er die Messdaten erneut, so dass selbst die schwächsten Signale der Kristalle noch zur Erstellung der Struktur genutzt werden konnten.

Dazu wurden Daten sowohl in Soleil als auch an der stärksten Röntgen-Messstation der Welt, PETRA-III in Hamburg, gemessen. „Dem Computermodell der Struktur mussten erst wieder Teile entfernt werden, um anhand der Daten erkennen zu können, wo sie richtig angebracht werden mussten. Nach weiteren zweieinhalb Jahren konnten wir die Struktur der RNA Polymerase I schließlich lösen“, so Dr. Grüne.

Originalveröffentlichung: Carlos Fernandez-Tornero et al. Crystal structure of the 14-subunit RNA polymerase I. Published online in Nature. DOI: 10.1038/nature12636.

Kontaktadresse:
Dr. Tim Grüne
Georg-August-Universität Göttingen
Fakultät für Chemie – Institut für anorganische Chemie
Tammannstraße 4, 37077 Göttingen
Telefon (0551) 39-22149, E-Mail: tg@shelx.uni-ac.gwdg.de
Internet: http://shelx.uni-ac.gwdg.de/~tg/

Thomas Richter | Uni Göttingen
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie