Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Proteinproduzent entschlüsselt

24.10.2013
Göttinger Wissenschaftler an Enthüllung der atomaren Struktur der „RNA Polymerase I“ beteiligt

Wissenschaftler unter Beteiligung der Universität Göttingen haben die dreidimensionale Struktur der RNA Polymerase I bestimmt und so eine wichtige Brücke zwischen der DNA und der Frage, wie unser Körper funktioniert, geschlossen.


Mithilfe von Röntgenstrahlen konnte das Innenleben der RNA Polymerase I auf atomarem Niveau erstmals enthüllt werden.

Grafik: María Moreno-Morcillo

Dazu musste das komplexe Molekül, das seinerseits aus 14 Proteinen zusammengesetzt ist, erst kristallisiert werden. Dadurch konnte mithilfe von Röntgenstrahlen das Innenleben der RNA Polymerase I auf atomarem Niveau enthüllt werden. Die Ergebnisse sind in der renommierten Fachzeitschrift Nature erschienen.

Die Doppelhelix der DNA ist bekannt als Träger unseres Erbguts. Auf molekularer Ebene müssen aus der DNA Proteine hergestellt werden, die die Arbeit in unserem Körper übernehmen: Enzyme verdauen im Magen, Insulin regelt unseren Blutzuckerspiegel. Verantwortlich für die Proteinproduktion in der Zelle ist das Ribosom. Das Bindeglied zwischen DNA und Ribosom ist die sogenannte „RNA Polymerase I“, die mithilfe der DNA den Großteil des Ribosoms herstellt.

Jetzt haben Wissenschaftler unter Beteiligung der Universität Göttingen die dreidimensionale Struktur der RNA Polymerase I bestimmt und so eine wichtige Brücke zwischen der DNA und der Frage, wie unser Körper funktioniert, geschlossen. Dazu musste das komplexe Molekül, das seinerseits aus 14 Proteinen zusammengesetzt ist, erst kristallisiert werden. Dadurch konnte mithilfe von Röntgenstrahlen das Innenleben der RNA Polymerase I auf atomarem Niveau enthüllt werden. Die Ergebnisse sind in der renommierten Fachzeitschrift Nature erschienen.

Als die Wissenschaftler bei der Berechnung der Struktur RNA Polymerase I nach fünf Jahren Forschung nicht weiter kamen, wurde durch die Beteiligung des Kristallographen Dr. Tim Grüne vom Institut für Anorganische Chemie der Universität Göttingen im Jahr 2010 der Stein wieder ins Rollen gebracht: Zusammen mit Dr. Pierre Legrand vom Synchrotron Soleil bei Paris bearbeitete er die Messdaten erneut, so dass selbst die schwächsten Signale der Kristalle noch zur Erstellung der Struktur genutzt werden konnten.

Dazu wurden Daten sowohl in Soleil als auch an der stärksten Röntgen-Messstation der Welt, PETRA-III in Hamburg, gemessen. „Dem Computermodell der Struktur mussten erst wieder Teile entfernt werden, um anhand der Daten erkennen zu können, wo sie richtig angebracht werden mussten. Nach weiteren zweieinhalb Jahren konnten wir die Struktur der RNA Polymerase I schließlich lösen“, so Dr. Grüne.

Originalveröffentlichung: Carlos Fernandez-Tornero et al. Crystal structure of the 14-subunit RNA polymerase I. Published online in Nature. DOI: 10.1038/nature12636.

Kontaktadresse:
Dr. Tim Grüne
Georg-August-Universität Göttingen
Fakultät für Chemie – Institut für anorganische Chemie
Tammannstraße 4, 37077 Göttingen
Telefon (0551) 39-22149, E-Mail: tg@shelx.uni-ac.gwdg.de
Internet: http://shelx.uni-ac.gwdg.de/~tg/

Thomas Richter | Uni Göttingen
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops