Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger Zeit beim Zahnarzt durch neue photoaktive Moleküle

28.04.2014

Ein neuentwickeltes Zahnfüllungs-Material lässt das Licht tiefer eindringen und kann daher in halb so vielen Arbeitsschritten wie bisher ausgehärtet werden.

Zahnfüllungen aus Amalgam sind aus der Mode gekommen. Meist verwendet man heute weiße Kunststofffüllungen, die optisch kaum vom Zahn zu unterscheiden sind. Gehärtet werden diese Materialien meist mit Licht, allerdings kann das Licht nicht unbeschränkt tief in das Material eindringen.


Im chemischen Syntheselabor werden die Initiatoren hergestellt

TU Wien


Photorheometrie erlaubt die Untersuchung von Härtungsvorgängen

TU Wien

Bisher musste man diese Füllungen daher oft mühsam in mehreren Schichten auftragen und aushärten. Die TU Wien und die Firma Ivoclar Vivadent haben nun gemeinsam eine Germanium-basierte Verbindung entwickelt, die diesen Vorgang deutlich vereinfacht – eine gute Nachricht für alle, die gerne möglichst wenig Zeit am Zahnarztstuhl verbringen wollen.

Härten mit Licht

Zahnfüllmaterialien bestehen aus einem Mix ganz unterschiedlicher Stoffe (daher bezeichnet man sie auch als „Dentalkomposite“). Neben anorganischen Füllstoffen beinhalten sie meist auch Moleküle, die speziell auf Licht eines bestimmten Wellenlängenbereichs reagieren und relativ rasch aushärten, wenn man sie mit einer speziellen Lampe bestrahlt.

Prof. Robert Liska beschäftigt sich mit seinem Team am Institut für Angewandte Synthesechemie der TU Wien schon lange mit solchen photoaktiven Molekülen – also Substanzen, die auf Licht reagieren. Sie kommen unter anderem auch bei modernen 3D-Druck-Verfahren zum Einsatz.

Die Eindringtiefe des Lichts in das Zahnfüllmaterial hängt u.a. von seiner Wellenlänge ab. „Meist verwendet man heute Licht in der Grenzregion zwischen ultraviolettem und sichtbarem Licht“, erklärt Robert Liska. Es gibt auch Alternativen, die mit längerwelligem Licht arbeiten, das tiefer eindringt, doch das wiederum ist weniger effektiv im Auslösen der notwendigen chemischen Reaktionen. Dringt das Licht nicht ausreichend tief ins Material ein, um die gesamte Füllung auf einmal zu härten, muss in mehreren Schritten gearbeitet werden. Das kann bei großen Kavitäten im Zahn unangenehm lange dauern.

Germanium-Verbindung als Auslöser für Kettenreaktionen

Mit Hilfe einer Germanium-Verbindung konnte dieses Problem aber gelöst werden. Die Verbindung macht bloß 0,03% des Füllmaterials aus, spielt aber eine entscheidende Rolle. Das Molekül wird von blauem Licht in zwei Teile aufgespalten, dadurch entstehen Radikale, die eine Kettenreaktion auslösen: Die molekularen Bausteine, die bereits im Füllmaterial vorhanden sind, fügen sich zu Polymeren zusammen, das Material erhärtet.

Nachdem an der TU Wien dieser Germanium-basierte Photoinitiator synthetisiert werden konnte, wurde er von Ivoclar Vivadent ausführlich getestet, an der TU Graz wurde der physikalisch-chemische Mechanismus noch weiter erforscht. Die Durchhärtungstiefe konnte mit dem neuen Füllmaterial von bisher 2 mm auf 4 mm gesteigert werden – dadurch kann man die Behandlungszeit deutlich reduzieren.

Die Germanium-Verbindung ist eine wertvolle Substanz: Mit 20.000 Euro pro Kilo kostet sie immerhin mehr als die Hälfte wie Gold – doch nachdem nur winzige Mengen davon benötigt werden, ist das kein maßgeblicher Kostenfaktor für die Zahnbehandlung.

Erfolgreiches Christian-Doppler-Labor an der TU Wien

Die Entwicklung des neuen Füllmaterials ist nicht der einzige Erfolg der TU Wien im Bereich der Zahnmedizin in Zusammenarbeit mit der Ivoclar Vivadent AG: Bereits im Jahr 2012 wurde mit Unterstützung von Ivoclar Vivadent am Institut für Angewandte Synthesechemie gemeinsam mit dem Institut für Werkstoffwissenschaften und Werkstofftechnologie (Prof. Jürgen Stampfl) das Christian-Doppler-Labor „Photopolymers in digital and restorative dentistry“ gestartet. Seither werden dort sehr erfolgreich photosensitive Substanzen für die Zahnmedizin entwickelt bzw. auch am 3D-Druck von Keramikimplantaten geforscht.

Rückfragehinweis:
Prof. Robert Liska
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163614
robert.liska@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie