Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Vögel keine Ohrmuscheln brauchen

11.12.2014

Im Gegensatz zu Säugetieren haben Vögel keine Außenohren. Der äußere Teil der Ohren hat eine wichtige Funktion: Tiere können damit Laute identifizieren, die aus unterschiedlichen Höhen kommen. Aber auch Vögel hören, ob sich eine Schallquelle über ihnen, unter ihnen oder auf gleicher Höhe befindet. Ein Forschungsteam der Technischen Universität München (TUM) hat jetzt herausgefunden, wie es Vögeln gelingt, diese Geräusche zu orten: Die Aufgabe der Außenohren übernimmt bei ihnen der ganze Kopf. Die Arbeit ist kürzlich in PLOS ONE erschienen.

Es ist Frühjahr, zwei Amseln singen um die Wette. Sie buhlen um die Gunst eines Weibchens. Welchen der beiden Amselmänner wird es erhören? Dafür muss das Weibchen seinen Wunschpartner erst einmal orten können.


Die Bilder zeigen, wie bei Huhn, Ente und Krähe die Lautstärke am rechten Ohr bei Geräuschen aus verschiedenen Richtungen variiert.

Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014) The Avian Head Induces Cues for Sound Localization in Elevation. PLoS ONE 9(11): e112178. doi:10.1371/journal.pone.0112178


Vögel mit seitlich stehenden Augen, z.B. Amseln, können die Höhenposition von Schallquellen abhängig von der Lautstärke unterscheiden. Dagegen sind Schleiereulen auf frontale Geräusche spezialisiert.

Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014) The Avian Head Induces Cues for Sound Localization in Elevation. PLoS ONE 9(11): e112178. doi:10.1371/journal.pone.0112178

"Da Vögel keine Außenohren haben, dachte man lange, dass sie Laute aus unterschiedlichen Höhen nicht unterscheiden können", erklärt Hans A. Schnyder vom TUM-Lehrstuhl für Zoologie. "Allerdings sollte eine weibliche Amsel 'ihr' Männchen auch dann finden, wenn dieses direkt über ihr trällert."

Säugetiere identifizieren vertikale Geräuschquellen mit ihren Außenohren: Deren besonderer Aufbau schluckt die Schallwellen, reflektiert oder beugt sie. Aus diesen Informationen leitet das Gehör ab, aus welcher Höhe ein Laut kommt. Doch wie nehmen Vögel diese Unterschiede wahr?

Der Kopf ersetzt die Außenohren

Durch Untersuchungen an drei Vogelarten - Krähe, Ente und Huhn - fand Schnyder heraus, dass auch Vögel Schall aus verschiedenen Höhenwinkeln identifizieren können. Offenbar verändert ihr leicht oval geformter Kopf Schallwellen in ähnlicher Weise wie Ohrmuscheln.

"Am Trommelfell der Vögel haben wir die Lautstärke von Tönen aus unterschiedlichen Höhenrichtungen gemessen", berichtet Schnyder. Alle Geräuschquellen, die auf derselben Seite wie das Ohr liegen, sind ähnlich laut, egal aus welcher Höhe sie kommen. Das Ohr auf der gegenüberliegenden Seite des Kopfes registriert Höhenunterschiede dagegen viel genauer - in Form unterschiedlicher Lautstärken.

Unterschiedliche Lautstärken verraten Geräuschquellen

Dafür verantwortlich ist die Kopfform der Vögel. Je nach dem wo Schallwellen am Kopf auftreffen, werden sie zurückgeworfen, geschluckt oder abgelenkt. Wie die Wissenschaftler herausfanden, schattet der Kopf den Schall aus bestimmten Richtungen komplett ab. Andere Schallwellen wandern über den Kopf und lösen eine Reaktion am gegenüberliegenden Ohr aus.

Ob ein Geräusch von oben oder unten kommt, errechnet das Gehirn aus den unterschiedlichen Lautstärken an beiden Ohren. "Somit können Vögel erkennen, wo genau sich eine seitlich gelegene Schallquelle befindet - zum Beispiel auf Augenhöhe", führt Schnyder aus. "Das System ist äußerst genau: Am besten können Vögel seitliche Geräusche in einem Höhenwinkel von - 30 bis + 30 Grad orten."

Zusammenspiel von Hören und Sehen verbessert Orientierung

Warum haben Vögel das vertikale Hören entwickelt? Bei den meisten Vögeln sitzen die Augen seitlich, sie haben damit ein Sehfeld von nahezu 360 Grad. Da sie zusätzlich darauf spezialisiert sind, seitliche Geräusche aus unterschiedlichen Höhen zu verarbeiten, ergänzen sich die Informationen von Hör- und Sehsinn in idealer Weise - eine wichtige Fähigkeit für Vögel, die als Beutetiere gejagt werden.

Einige Greifvögel wie die Schleiereule haben eine völlig andere Strategie entwickelt. Die Eulenart jagt im Dunklen, wie beim Menschen sind ihre Augen nach vorn gerichtet. Ihr Federschleier im Gesicht modifiziert Laute in ähnlicher Weise wie Außenohren. Im Gegensatz zu den von Schnyder untersuchten Vogelarten hört die Eule frontale Geräusche am besten.

So fügen sich auch bei ihr die Informationen aus Hör- und Sehsinn optimal zusammen, wie frühere Untersuchungen gezeigt haben. "Unsere aktuellen Ergebnisse weisen in die gleiche Richtung: Offenbar ist der Einklang von Sehen und Hören ein wichtiges Prinzip in der Evolution der Tiere", so Schnyder abschließend.

Publikation:
The Avian Head Induces Cues for Sound Localization in Elevation;
Hans A. Schnyder, Dieter Vanderelst, Sophia Bartenstein, Uwe Firzlaff and Harald Luksch; PLOS ONE, November 2014, DOI: 10.1371/journal.pone.0112178, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112178

Mehr Informationen:

Interview mit Hans A. Schnyder: http://youtu.be/ZlkxQTqt3m8
Bildmaterial: http://go.tum.de/069105

Kontakt:
Technische Universität München
Lehrstuhl für Zoologie
zoologie.wzw.tum.de

Hans A. Schnyder
Tel.: +49 8161 71-2806
hansa.schnyder@tum.de

Prof. Dr. Harald Luksch
Tel.: +49 8161 71-2801
harald.luksch@wzw.tum.de


Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32029/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Molekularbiologen entdecken eine aktive Rolle von Membranfetten bei der Entstehung von Krankheiten
27.07.2017 | Universität des Saarlandes

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops