Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Waffen der Salmonellen sind enttarnt

04.03.2011
Bakterien wie etwa Salmonellen infizieren ihre Wirtszellen über nadelartige Fortsätze, die sie bei einer Attacke in großer Zahl aufbauen.

Mit neu entwickelten Methoden der Kryo-Elektronenmikroskopie konnten Wiener Forscher um Thomas Marlovits die Struktur dieses Infektionsapparats im nahezu atomaren Bereich auflösen. Das Wissen um den exakten Bauplan soll bei der Entwicklung von Medikamenten helfen, die die Infektion unterbinden.


Struktur des Nadelkomplexes von Salmonella im zellulären Zusammenhang (Grafische Interpretation, basierend auf Originaldaten). IMP-IMBA


Dreidimensionale Rekonstruktion des Nadelkomplexes von Salmonella. IMP-IMBA

„Sesam öffne dich“ für Bakterien

Pest, Typhus, Cholera - einige der verheerendsten Krankheiten werden von Bakterien ausgelöst, denen eines gemeinsam ist: sie verfügen über einen effizienten Infektionsapparat, der als Waffe fast unschlagbar ist. Beim Befall einer Körperzelle bauen sie zahlreiche hohlnadelartige Strukturen auf, die aus der Bakterienhülle ragen. Durch diese Nadeln injizieren sie Signalstoffe in die Wirtszellen, die diese umprogrammieren und ihre Abwehr überwinden. Fortan haben die Krankheitserreger leichtes Spiel und können ungehindert in großer Zahl in die Zellen eindringen.

Der Biochemiker und Biophysiker Thomas Marlovits, Gruppenleiter an den Wiener Instituten IMP (Forschungsinstitut für Molekulare Pathologie) und IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften), beschäftigt sich seit mehreren Jahren mit dem Infektionskomplex von Salmonellen. Bereits im Jahr 2006 konnte er beschreiben, wie der Aufbau des Nadelkomplexes von Salmonella typhimurium vor sich geht (Nature 441, 637-640). Nun gelang es ihm und seinem Doktoranden Oliver Schraidt, die dreidimensionale Struktur in extrem hoher Auflösung darzustellen. Das Team konnte Einzelheiten mit Dimensionen von 5-6 Angström sichtbar machen – das sind nahezu atomare Größenordnungen. Die Arbeit wird in der aktuellen Ausgabe des Wissenschaftsmagazins Science vorgestellt.

Wie gesehen, so zerstört

Nie zuvor wurde das Infektionswerkzeug von Salmonellen mit derartiger Präzision dargestellt. Erreicht wurde dies durch den kombinierten Einsatz von hochauflösender Kryo-Elektronenmikroskopie und eigens entwickelter Imaging-Software. Das „coolste Mikroskop Österreichs“ erlaubt es, biologische Proben bei minus 196 Grad schockzugefrieren und in diesem Zustand weitgehend unverfälscht zu betrachten. Allerdings kämpfen die Wissenschaftler beim immer stärkeren „Heranzoomen“ an ihr Objekt mit einem tückischen Problem: der energiereiche Elektronenstrahl fällt so konzentriert auf die Probe, dass diese mit dem ersten Bild auch schon wieder zerstört ist.

Die Wiener Forscher lösten das Problem mit bildverarbeitenden Algorithmen und mit der schieren Masse der Bilder. Sie analysierten rund 37 000 Aufnahmen von isolierten Nadelkomplexen. Ähnliche Bilder wurden zusammengefasst und miteinander verrechnet; so lässt sich aus zahlreichen, sehr rauschbehafteten Aufnahmen ein einzelnes, scharfes dreidimensionales Bild generieren. Die enorme Rechenleistung lieferte ein Cluster von rund 500 zusammengeschalteten Computern.

Mikroskopieren ohne störende Menschen

Um die große Zahl an Aufnahmen zu erreichen, erledigte das Mikroskop die Arbeit teilweise automatisch in den Nachtstunden. Das hat wesentliche Vorteile, denn Menschen stören dabei nur. Sie atmen, sprechen und bewegen sich und erschüttern dadurch das empfindliche Mikroskop. Selbst ein fahrender Aufzug kann den Elektronenstrahl irritieren.

Das Kryo-Elektronenmikroskop am IMP-IMBA ist das einzige seiner Art in Österreich. Der hohe technische Aufwand, der mit seinem Betrieb einhergeht, macht sich für die Forscher bezahlt. Das Vordringen in den Subnanometer-Bereich erschloss ihnen eine weitere Möglichkeit, ihre Erkenntnisse zu verfeinern. Sie konnten bereits vorhandene Daten, die durch Kristallographie gewonnen wurden, in die Nadelstruktur „einpassen“ und das dreidimensionale Bild damit perfekt ergänzen. Mit dieser Hybridmethode gelang es ihnen, den kompletten Bauplan des Infektionsapparats aufzuklären.

Für Thomas Marlovits stellt die Technologie einen Innovationsschub dar: „Mit den Methoden, die wir für unsere Arbeit entwickelt haben, konnten wir das „Imaging“-Verfahren auf einem hohen Niveau etablieren. Die fantastische Infrastruktur, die wir hier am Campus Vienna Biocenter zur Verfügung haben, können wir damit bis an ihre Grenzen ausreizen.“

Die Erkenntnisse bringen nicht nur die Grundlagenforschung voran, so Marlovits: „Es ist denkbar, dass sich auf der Basis unserer Daten eine Substanz entwickeln lässt, die sich in den Nadelkomplex einbaut und seine Funktion stört. Dann hätten wir ein sehr wirksames Medikament – nicht nur gegen Salmonellen, sondern auch gegen andere Krankheitserreger, die dieses System nutzen, etwa die Auslöser von Cholera, Pest und Typhus.“

Originalarbeit: “Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution”. Oliver Schraidt & Thomas C. Marlovits, Science, 4.3.2011.

Der Biochemiker und Biophysiker Thomas Marlovits stammt aus Rechnitz im Burgenland. Seit 2005 ist er gemeinsamer Gruppenleiter der Partnerinstitute IMP und IMBA. Zuvor forschte er fünf Jahre lang als Postdoktorand an der Universität Yale. Marlovits beschäftigt sich mit der Struktur und Funktion molekularer Maschinen und begann bereits in Yale mit Untersuchungen am Infektionsapparat von Salmonellen, die er am IMP-IMBA fortsetzte.

Die Forschungsarbeit von Thomas Marlovits wird unter anderem im Rahmen eines „Vienna Spots of Excellence“ mit dem Titel „Center of Molecular and Cellular Nanostructure Vienna (CMCN)“ gefördert, dessen Leiter Marlovits ist. Diese Initiative der Stadt Wien unterstützt Forschungsvorhaben, an denen sowohl Unternehmen als auch wissenschaftliche Institutionen beteiligt sind.

Das IMP − Forschungsinstitut für Molekulare Pathologie betreibt Grundlagenforschung im internationalen Unternehmensverband Boehringer Ingelheim. IMBA − Institut für Molekulare Biotechnologie ist ein Grundlagen-Forschungsinstitut der Österreichischen Akademie der Wissenschaften. Die beiden Institute sind am Campus Vienna Biocenter angesiedelt und durch eine Forschungskooperation verbunden.

Dr. Heidemarie Hurtl | IMP
Weitere Informationen:
http://www.imp.ac.at
http://www.imba.oeaw.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie