Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Waffen der Salmonellen sind enttarnt

04.03.2011
Bakterien wie etwa Salmonellen infizieren ihre Wirtszellen über nadelartige Fortsätze, die sie bei einer Attacke in großer Zahl aufbauen.

Mit neu entwickelten Methoden der Kryo-Elektronenmikroskopie konnten Wiener Forscher um Thomas Marlovits die Struktur dieses Infektionsapparats im nahezu atomaren Bereich auflösen. Das Wissen um den exakten Bauplan soll bei der Entwicklung von Medikamenten helfen, die die Infektion unterbinden.


Struktur des Nadelkomplexes von Salmonella im zellulären Zusammenhang (Grafische Interpretation, basierend auf Originaldaten). IMP-IMBA


Dreidimensionale Rekonstruktion des Nadelkomplexes von Salmonella. IMP-IMBA

„Sesam öffne dich“ für Bakterien

Pest, Typhus, Cholera - einige der verheerendsten Krankheiten werden von Bakterien ausgelöst, denen eines gemeinsam ist: sie verfügen über einen effizienten Infektionsapparat, der als Waffe fast unschlagbar ist. Beim Befall einer Körperzelle bauen sie zahlreiche hohlnadelartige Strukturen auf, die aus der Bakterienhülle ragen. Durch diese Nadeln injizieren sie Signalstoffe in die Wirtszellen, die diese umprogrammieren und ihre Abwehr überwinden. Fortan haben die Krankheitserreger leichtes Spiel und können ungehindert in großer Zahl in die Zellen eindringen.

Der Biochemiker und Biophysiker Thomas Marlovits, Gruppenleiter an den Wiener Instituten IMP (Forschungsinstitut für Molekulare Pathologie) und IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften), beschäftigt sich seit mehreren Jahren mit dem Infektionskomplex von Salmonellen. Bereits im Jahr 2006 konnte er beschreiben, wie der Aufbau des Nadelkomplexes von Salmonella typhimurium vor sich geht (Nature 441, 637-640). Nun gelang es ihm und seinem Doktoranden Oliver Schraidt, die dreidimensionale Struktur in extrem hoher Auflösung darzustellen. Das Team konnte Einzelheiten mit Dimensionen von 5-6 Angström sichtbar machen – das sind nahezu atomare Größenordnungen. Die Arbeit wird in der aktuellen Ausgabe des Wissenschaftsmagazins Science vorgestellt.

Wie gesehen, so zerstört

Nie zuvor wurde das Infektionswerkzeug von Salmonellen mit derartiger Präzision dargestellt. Erreicht wurde dies durch den kombinierten Einsatz von hochauflösender Kryo-Elektronenmikroskopie und eigens entwickelter Imaging-Software. Das „coolste Mikroskop Österreichs“ erlaubt es, biologische Proben bei minus 196 Grad schockzugefrieren und in diesem Zustand weitgehend unverfälscht zu betrachten. Allerdings kämpfen die Wissenschaftler beim immer stärkeren „Heranzoomen“ an ihr Objekt mit einem tückischen Problem: der energiereiche Elektronenstrahl fällt so konzentriert auf die Probe, dass diese mit dem ersten Bild auch schon wieder zerstört ist.

Die Wiener Forscher lösten das Problem mit bildverarbeitenden Algorithmen und mit der schieren Masse der Bilder. Sie analysierten rund 37 000 Aufnahmen von isolierten Nadelkomplexen. Ähnliche Bilder wurden zusammengefasst und miteinander verrechnet; so lässt sich aus zahlreichen, sehr rauschbehafteten Aufnahmen ein einzelnes, scharfes dreidimensionales Bild generieren. Die enorme Rechenleistung lieferte ein Cluster von rund 500 zusammengeschalteten Computern.

Mikroskopieren ohne störende Menschen

Um die große Zahl an Aufnahmen zu erreichen, erledigte das Mikroskop die Arbeit teilweise automatisch in den Nachtstunden. Das hat wesentliche Vorteile, denn Menschen stören dabei nur. Sie atmen, sprechen und bewegen sich und erschüttern dadurch das empfindliche Mikroskop. Selbst ein fahrender Aufzug kann den Elektronenstrahl irritieren.

Das Kryo-Elektronenmikroskop am IMP-IMBA ist das einzige seiner Art in Österreich. Der hohe technische Aufwand, der mit seinem Betrieb einhergeht, macht sich für die Forscher bezahlt. Das Vordringen in den Subnanometer-Bereich erschloss ihnen eine weitere Möglichkeit, ihre Erkenntnisse zu verfeinern. Sie konnten bereits vorhandene Daten, die durch Kristallographie gewonnen wurden, in die Nadelstruktur „einpassen“ und das dreidimensionale Bild damit perfekt ergänzen. Mit dieser Hybridmethode gelang es ihnen, den kompletten Bauplan des Infektionsapparats aufzuklären.

Für Thomas Marlovits stellt die Technologie einen Innovationsschub dar: „Mit den Methoden, die wir für unsere Arbeit entwickelt haben, konnten wir das „Imaging“-Verfahren auf einem hohen Niveau etablieren. Die fantastische Infrastruktur, die wir hier am Campus Vienna Biocenter zur Verfügung haben, können wir damit bis an ihre Grenzen ausreizen.“

Die Erkenntnisse bringen nicht nur die Grundlagenforschung voran, so Marlovits: „Es ist denkbar, dass sich auf der Basis unserer Daten eine Substanz entwickeln lässt, die sich in den Nadelkomplex einbaut und seine Funktion stört. Dann hätten wir ein sehr wirksames Medikament – nicht nur gegen Salmonellen, sondern auch gegen andere Krankheitserreger, die dieses System nutzen, etwa die Auslöser von Cholera, Pest und Typhus.“

Originalarbeit: “Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution”. Oliver Schraidt & Thomas C. Marlovits, Science, 4.3.2011.

Der Biochemiker und Biophysiker Thomas Marlovits stammt aus Rechnitz im Burgenland. Seit 2005 ist er gemeinsamer Gruppenleiter der Partnerinstitute IMP und IMBA. Zuvor forschte er fünf Jahre lang als Postdoktorand an der Universität Yale. Marlovits beschäftigt sich mit der Struktur und Funktion molekularer Maschinen und begann bereits in Yale mit Untersuchungen am Infektionsapparat von Salmonellen, die er am IMP-IMBA fortsetzte.

Die Forschungsarbeit von Thomas Marlovits wird unter anderem im Rahmen eines „Vienna Spots of Excellence“ mit dem Titel „Center of Molecular and Cellular Nanostructure Vienna (CMCN)“ gefördert, dessen Leiter Marlovits ist. Diese Initiative der Stadt Wien unterstützt Forschungsvorhaben, an denen sowohl Unternehmen als auch wissenschaftliche Institutionen beteiligt sind.

Das IMP − Forschungsinstitut für Molekulare Pathologie betreibt Grundlagenforschung im internationalen Unternehmensverband Boehringer Ingelheim. IMBA − Institut für Molekulare Biotechnologie ist ein Grundlagen-Forschungsinstitut der Österreichischen Akademie der Wissenschaften. Die beiden Institute sind am Campus Vienna Biocenter angesiedelt und durch eine Forschungskooperation verbunden.

Dr. Heidemarie Hurtl | IMP
Weitere Informationen:
http://www.imp.ac.at
http://www.imba.oeaw.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie