Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vulkanwolke über Frankfurt eicht Satelliten

29.04.2010
Erstmals Schwefeldioxidmessungen vom Flugzeug im direkten Vergleich zum Satelliten GOME-2

Mit seinem einmaligen Messcontainer CARIBIC konnte das Max-Planck-Institut für Chemie erstmals Schwefeldioxidmessungen des Satelliten GOME-2 direkt überprüfen. Die gute Übereinstimmung der Daten festigt das Vertrauen in solche Satellitendaten. Die regelmäßig mit dem CARIBIC Container bestückte Maschine der Lufthansa flog kurz vor dem Landeanflug auf Frankfurt am 15. August 2008 durch die Abgasfahne des alaskanischen Vulkans Kasatochi. Drei Stunden später vermaß auch der Satellit GOME-2 die Wolke. Die Ergebnisse wurden jetzt im Online Journal Atmospheric Chemistry and Physics veröffentlicht.

Für Beobachtungen der Erdatmosphäre und des Klimas sind Satelliten unerlässlich. Sie liefern weltweite Daten über die Erde, insbesondere die Konzentration verschiedener Treibhaus- und anderer Spurengase. Die spektakulären Bilder, die sie liefern, schaffen großes Vertrauen in die Daten, die die Spione aus dem All liefern. Dabei sind komplizierte mathematische Berechnungen nötig, um die gewünschten Information zu extrahieren. Nicht immer wissen die Wissenschaftler, wie groß der Fehler ist. Durch einen Glücksfall, den Durchzug einer Vulkanwolke mit hohem Schwefeldioxidgehalt über Frankfurt, konnten Wissenschaftler des Max-Planck-Institut für Chemie in Mainz einen Vergleichstest durchführen. Für den Sponsor Fraport AG, der das Projekt mit 600.000 Euro unterstützt, stellte der Vorstandsvorsitzende Dr. Stefan Schulte die Bedeutung einer umfassenden Datensammlung für den Luftverkehr heraus: "Die Nachfrage nach Luftverkehrsdienstleistungen wird auch in den nächsten Jahrzehnten weiter steigen. Unsere Aufgabe ist es, dieses Wachstum im Einklang mit unserer Verantwortung für eine nachhaltige Entwicklung sicherzustellen.

Als Flughafenbetreiber stellen wir uns dieser Verantwortung und haben deshalb zum Gelingen des Projekts erheblich finanziell beigetragen."

"Ein bisschen fühlen wir uns bei dieser Arbeit wie Stiftung Warentest", sagt CARIBIC-Projektleiter Dr. Carl Brenninkmeijer. "Wir nutzen für CARIBIC dieselbe Messtechnik wie bei GOME-2, um die Gaskonzentration in der Atmosphäre zu bestimmen: Spektralanalysen des Sonnenlichtes mittels Differential Optischer Absorptions Spektroskopie, kurz DOAS." (Für Einzelheiten zu den Messungen und dem CARIBIC-Projekt siehe Hintergrundinformation). Die Bedingungen und Berechnungen sind jedoch andere, da das Flugzeug in wesentlich geringerer Höhe fliegt. Zum Vergleich: Das Flugzeug flog in ca. elf Kilometern, der Satellit in 817 Kilometern Höhe. "Die Tatsache, dass die Daten von Satellit und Flugzeugcontainer nur um sieben Prozent abweichen, bestätigt sowohl unsere als auch die Satellitenumrechnungen", führt Dr. Klaus-Peter Heue aus. Gemessen haben die Wissenschaftler in beiden Fällen die sogenannte Säulendichte des Schwefeldioxids. Das ist die gesamte Menge an Schwefeldioxid, die sich in der Luftsäule über einem bestimmten Fleck der Erde befindet, vom Boden bis in die oberen Höhen der Atmosphäre.

"Schwefeldioxid ist nicht gerade das häufigste Gas in der Atmosphäre und daher war es für uns solch ein Glücksfall mit dem Messcontainer direkt durch die Vulkanwolke zu fliegen" so Klaus-Peter Heue. "Da unser Messgerät direkt vor Ort war, gab es wesentlich weniger Störeinflüsse. Bodenmessungen wären in diesem Falle sogar unmöglich gewesen, da sich unterhalb der Vulkanwolke normale Wolken befanden." Die Schwefeldioxid-Konzentration in der Wolke lag mit 100 ppb - also ein Teil pro eine Milliarde Teilchen Luft - etwa um den Faktor 1000 über der natürlichen Konzentration. Und das obwohl die Vulkanwolke bereits von der entgegengesetzten Seite der Nordhalbkugel nach Frankfurt transportiert worden war.

Das Gas Schwefeldioxid ist für Klimaforscher interessant, da es zu Partikelbildung führt (Aerosole), die einen kühlenden Effekt auf die Erde haben. Große Vulkanausbrüche wie der des Pinatubo 1991 schleudern Schwefelwolken bis über die Wetterschicht der Atmosphäre in die Stratosphäre, wo die Teilchen über Jahre schweben und als eine Art Sonnenschirm fungieren. Die Schwefeldioxid-Konzentration steigt jedoch momentan unter anderem an, weil schwefelhaltige Steinkohle zur Energieerzeugung genutzt wird. Im Jahre 2006 forderte der Nobelpreisträger Paul Crutzen, den weltweiten Kreislauf von Schwefel besser zu erforschen. Provozierend schlug er vor, als letzten Rettungsanker Schwefelteilchen in die Atmosphäre zu schießen, um einen künstlichen Sonnenschirm aufzuspannen.

Hintergrundinformation:

Messung: Sowohl der Satellit als auch der CARIBIC-Container analysieren die genaue Zusammensetzung des reflektierten Sonnenlichtes, um Gaskonzentrationen auch in winzigen Spuren zu untersuchen. Das Licht setzt sich aus den verschiedenen Wellenlängen des Lichtes zusammen. Gase absorbieren Sonnenlicht nach sehr spezifischen Mustern. Sie werfen eine Art Schatten auf bestimmte Wellenlängen, ähnlich den 1814 von Fraunhofer entdeckten dunklen Linien im Spektrum des Sonnenlichtes, nur sehr viel schwächer. Diese Fingerabdrücke nutzen Wissenschaftler, um die Zusammensetzung der Atmosphäre zu analysieren. Für das menschliche Auge ist Luft durchsichtig, auch wenn sie sich aus vielen verschiedenen Gasen zusammensetzt. Das Spektrometer jedoch kann jede einzelne Wellenlänge auflösen und erkennt, wenn bestimmte Wellenlänger schwächer ausgeprägt sind, als im normalen Sonnenlicht. Da bekannt ist, welche Gase bei welchen Wellenlängen absorbieren, lässt sich über dieses Wissen zurückrechnen, welche Gasmischung in der Luft vorhanden sein muss, um das gemessene Spektrum zu erzeugen. Dies ist das Prinzip der Differential Optischen Absorptions-Spektroskopie, kurz DOAS.

CARIBIC: Das einzigartige Projekt CARIBIC nutzt einen 1,5 Tonnen schweren Messcontainer, um weltweit hochgenaue Messungen in der Atmosphäre vorzunehmen. An dem in Deutschland entwickelten Projekt sind zehn Partner aus fünf europäischen Ländern beteiligt. Koordinator ist das Max-Planck-Institut für Chemie in Mainz. Das fliegende Labor reist auf vier Flügen pro Monat an Bord des A-340-600 "Leverkusen" der Lufthansa im Frachtraum mit. Ein speziell angefertigtes Einlasssystem am Flugzeugbauch leitet während des gesamten Fluges Luft- und Teilchenproben sowie Wetterdaten an die Instrumente im Inneren des Containers weiter. An dem Einlass sitzen auch die Teleskope für die Spektralanalysen des Sonnenlichtes. Die Geräte messen fünfzig klimarelevante Spurengase sowie Wasserdampf und Schwebteilchen in der Atmosphäre. Die detaillierten Daten helfen herauszufinden, wo die Quellen von Verunreinigungen liegen und wie sich die Atmosphäre selbst reinigt. So ergibt sich zu vergleichsweise geringen Kosten auf Dauer ein genaueres Abbild der Atmosphäre und der in ihr ablaufenden Prozesse. Gefördert wird das Projekt u.a. von der Lufthansa und seit 2009 auch von der Fraport AG in Frankfurt.

Weitere Informationen und Bilder:
Kirsten Achenbach
Öffentlichkeitsarbeit
MPI für Chemie
Tel: 06131-305-465
Mail: k.achenbach@mpic.de
Dr. Carl Brenninkmeijer
Max-Planck-Institut für Chemie
Projektleiter CARIBIC
Tel.: 06131-305 455
Mail: carl.brenninkmeijer@mpic.de
Informationen unter:
www.caribic.de - Projektbeschreibung
http://www.mpch-mainz.mpg.de/mpg/deutsch/pri1109.htm -
ältere Pressemitteilung zu CARIBIC

Pressestelle (UKM-PS) | presseportal
Weitere Informationen:
http://www.caribic.de
http://www.mpch-mainz.mpg.de/mpg/deutsch/pri1109.htm
http://www.presseportal.de/go2/mediabase

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie