Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verräterische Siegel-Massen

19.05.2010
Bildgebende Massenspektrometrie zur Untersuchung von Kunstwerken
Kunstwerke sind wertvoll und dazu meist sehr empfindlich. Für ihre Restaurierung und Konservierung, aber auch Datierung und Authentifizierung müssen ausgefeilte technische Methoden an den Start gebracht werden.

Ein Team um Sichun Zhang von der Tsinghua Universität in Peking hat nun ein neues bildgebendes massenspektrometrisches Verfahren entwickelt, mit dem sich Gemälde und Kalligraphien identifizieren lassen, ohne die Kunstgegenstände zu beschädigen. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, liegt das Erfolgsgeheimnis in einer speziellen Niedertemperatur-Plasmasonde, die Moleküle besonders schonend von der Oberfläche der Kunstwerke abträgt.

Bei der Massenspektrometrie (MS) wird die zu untersuchende Substanz in die Gasphase überführt, ionisiert (elektrisch geladen) und die ionisierten Teilchen durch ein elektrisches Feld beschleunigt. Im Analysator wird der Teilchenstrahl entsprechend der Masse und der Ladung der Teilchen aufgetrennt. Inzwischen wurden auch bildgebende massenspektrometrische Verfahren entwickelt. Dazu muss die Oberfläche einer Probe abgerastert und an jedem einzelnen Bildpunkt ein Massenspektrum aufgenommen werden. Voraussetzung waren spezielle Ionisierungsmethoden, die eine direkte Untersuchung der Probe erlauben. Allerdings arbeiten die meisten bisherigen bildgebenden massenspektrometrischen Verfahren unter Vakuum, was die Größe der analysierbaren Proben beschränkt. Mit einer so geannten Elektrospray-Technik tragen dabei Lösungsmittelmoleküle Analytmoleküle von der Oberfläche der Probe ab und ionisieren sie.

Empfindliche Kunstwerke wie Gemälde können durch die Lösungsmittel allerdings kontaminiert und beschädigt werden. Die chinesischen Wissenschaftler stellen nun eine neue Variante der bildgebenden MS vor. Sie arbeitet mit einer Niedertemperaturplasma-Sonde. Im Prinzip besteht diese Sonde aus einer aufgeschmolzenen Kapillare und zwei Elektroden aus Aluminiumfolie, an die eine sehr starke Wechselspannung angelegt wird. In der Kapillare befindet sich Heliumgas. Die hohe elektrische Spannung erzeugt eine so genannte stille elektrische Entladung im Helium. Das bedeutet, dass das Gas in Form von Ionen, Elektronen und angeregten Atomen vorliegt, ein Zustand, den man Plasma nennt. Dieses Plasma hat eine Temperatur von lediglich 30 °C. Das aus der Kapillare austretende Heliumplasma schießt Moleküle aus der Probenoberfläche und ionisiert sie. Wertvoller Kunstwerke werden dabei nicht beschädigt.

Die Wissenschaftler haben Siegel mit der neuen Methode analysiert. Es handelt sich dabei um Stempelabdrücke, die bei Malereien und Kalligraphien der chinesischen Kunst als Signatur und Mittel der Legitimation dienen. Es ist dem Team gelungen, mit der neuen Mikroplasma-Sonde Unterschiede in der Zusammensetzung der Tinte einzelner Siegel aufzuzeigen und so Original-Siegel von unechten zu unterscheiden.

Angewandte Chemie: Presseinfo 18/2010

Autor: Sichun Zhang, Tsinghua University, Beijing (China), http://chem.tsinghua.edu.cn/zhangxr/xrzhang.htm

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.200906975

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://chem.tsinghua.edu.cn/zhangxr/xrzhang.htm
http://dx.doi.org/10.1002/ange.200906975

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungsnachrichten

Maschinelles Lernen im Quantenlabor

19.01.2018 | Physik Astronomie

Warum es für Pflanzen gut sein kann auf Sex zu verzichten

19.01.2018 | Biowissenschaften Chemie