Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verdrehte Welt – Chemiker bauen molekulares Geländer

13.11.2014

Chemikern der Universität Basel ist es gelungen, ein Molekül auf eine neuartige Weise zu verdrehen, indem sie unterschiedlich lange Molekülstränge miteinander verbanden. Dabei windet sich der längere Strang wie ein Treppengeländer um eine zentrale Achse, und es entsteht eine spiegelbildliche Struktur, die über besondere physikalischen Eigenschaften verfügt. Die Resultate wurden in der renommierten Fachzeitschrift «Angewandte Chemie» veröffentlicht.

Die Chemie aller Stoffe wird zu einem wichtigen Teil von ihrer räumlichen Anordnung bestimmt. Viele Moleküle können in zwei Formen vorkommen, die sich wie die linke Hand zur rechten verhalten.

Insbesondere der Organismus unterscheidet sehr spezifisch zwischen links- und rechtshändigen Molekülen – ein Wirkstoff kann beispielsweise in der einen Form äusserst aktiv sein, sein Spiegelbild aber überhaupt nicht. Das fundamentale Verständnis dieser sogenannten Chiralität ist deshalb schon lange ein zentrales Thema der forschenden Chemie.

Verbindung unterschiedlich langer Stränge

Die Wissenschaftler um Prof. Marcel Mayor am Departement Chemie der Universität Basel haben einen neuen Ansatz entwickelt, um eine kleines Molekül in eine Form zu bringen, die dem Geländer einer Wendeltreppe ähnlich ist. Die Verbindung zweier unterschiedlich langer Oligomerstränge führt auf molekularer Ebene dazu, dass sich der längere Strang von selbst um den kürzeren windet, um die Längendiskrepanz auszugleichen.

Dabei entsteht eine Helix mit einer definierten links- oder rechtsdrehenden Laufrichtung und das gesamte Molekül wird händig (chiral). Zudem konnten die Forscher zeigen, dass es dem helixförmigen Molekül auch möglich ist, innerhalb einiger Stunden seine Form dynamisch von linkshändig nach rechtshändig und wieder zurück zu wechseln.

«Nicht nur die strukturelle Schönheit macht dieses Molekül so einzigartig», sagt Mayor, «es ist vor allem ein gänzlich neues Konzept, wie eine solche kontinuierliche Helix aufgebaut werden kann.»

Leistungsfähige Verfahren zur Herstellung chiraler Verbindungen sind sowohl in der Grundlagenforschung als auch in der Industrie von Interesse, beispielsweise zur Untersuchung biologischer Systeme, in der Pflanzenschutzchemie sowie in der Pharma- und Riechstoffindustrie. Das Projekt wurde vom Schweizerischen Nationalfonds gefördert.

Originalbeitrag
Rickhaus, M., Bannwart, L. M., Neuburger, M., Gsellinger, H., Zimmermann, K., Häussinger, D. and Mayor, M.
Induktion axialer Chiralität in einem Geländer-Oligomer durch Längendiskrepanz der Oligomerstränge
Angewandte Chemie (2014) | doi: 10.1002/ange.201408424

Weitere Auskünfte
Prof. Dr. Marcel Mayor, Universität Basel, Departement Chemie, Tel. +41 61 267 10 06, E-Mail: marcel.mayor@unibas.ch


Weitere Informationen:

http://dx.doi.org/10.1002/ange.201408424  - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics