Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Urtümliche Pflanze birgt genetische Überraschungen

07.07.2009
Botaniker der Universitäten Bonn und Bielefeld sind bei genetischen Analysen des Brachsenkrauts auf einige Absonderlichkeiten gestoßen.

Die Forscher haben das Erbgut der so genannten Mitochondrien unter die Lupe genommen - das sind gewissermaßen die "Kraftwerke" der Zelle.

Dabei stellte sich unter anderem heraus, dass die Erbanlagen mehr als 1.500 Fehler enthalten, die die Pflanze vor Umsetzen der Information korrigieren muss. Dazu steht ihr wahrscheinlich ein kompletter "Werkzeugkasten" mit vielen hundert Korrektur-Enzymen zur Verfügung. Möglicherweise gibt es sogar für jeden Fehler ein eigenes Werkzeug.

Mitochondrien zählen zu den Organellen. Das sind Zellbestandteile, die - ähnlich wie im größeren Stil Organe - spezielle Aufgaben übernehmen. So erzeugen Mitochondrien das energiereiche Molekül ATP. Sie werden daher oft auch als "Zellkraftwerke" bezeichnet.

Mitochondrien sind vor mehr als einer Milliarde Jahren aus Bakterien entstanden, die von höheren Zellen aufgenommen wurden. Für diese Endosymbiontentheorie spricht unter anderem, dass die Zellkraftwerke über eine eigene DNA verfügen. "Das Erbgut pflanzlicher Mitochondrien ist dabei häufig viel exotischer aufgebaut als das von Tieren", erklärt Felix Grewe vom Institut für Zelluläre und Molekulare Botanik. "Das ist auch im urtümlichen Brachsenkraut, Isoetes engelmannii, nicht anders."

Die Bonner Botaniker haben das Erbgut der Zellkraftwerke von Isoetes genauer unter die Lupe genommen. Dabei haben sie unter anderem entdeckt, dass die Erbanlagen mehr als 1.500 Fehler enthalten. Das scheint die Pflanze aber nicht weiter zu stören: Die Fehler werden nämlich bei Bedarf korrigiert - und zwar durch einen Satz von vielen hundert spezialisierten Werkzeugen.

Im Grunde genommen ist DNA nichts anderes als eine Art Bibliothek, deren Originalschriften viel zu wichtig sind, als dass man sie verleihen würde. Wer Informationen benötigt, kann jedoch eine Kopie bestellen. Diese enthält dann beispielsweise die Bauanleitung für ein spezielles Protein. In Isoetes ist der Original-Bibliotheksbestand an 1.500 Stellen fehlerhaft. Würde man die Bauanleitungen ungeprüft übernehmen, würden die danach konstruierten Proteine wahrscheinlich gar nicht oder nur schlecht funktionieren. Es gibt aber molekulare "Korrekturleser", die die Fehler berichtigen - allerdings nur in den Kopien. "Möglicherweise gibt es für jeden einzelnen Fehler ein spezialisiertes Molekül, das ihn korrigiert", erklärt Institutsleiter Professor Dr. Volker Knoop.

Letztlich bedeutet das nichts anderes, als dass die korrekte Information in Form dieser Moleküle (deren Bauanleitung ebenfalls Teil der DNA ist) gespeichert ist. Dieses sehr komplexe Prinzip kennt man inzwischen von einigen Pflanzen. Nirgendwo ist es aber so ausufernd anzutreffen wie beim Brachsenkraut. "So eine Korrekturmethode ist naturgemäß sehr fehleranfällig", sagt Knoop. "Das wirft die Frage auf, warum sie sich in Isoetes - und nicht nur dort - bis heute erhalten hat."

Kopien setzen sich selbst zusammen

Eine weitere Entdeckung elektrisierte die Forscher fast noch mehr. Die kopierten Bauanleitungen enthalten nämlich jede Menge "Datenmüll", die so genannten Introns. Diese müssen herausgeschnitten werden, bevor der Rest als Vorlage zur Protein-Produktion verwendet werden kann. Auch beim Menschen werden die "Arbeitskopien" entsprechend nachbearbeitet.

Manche Kopien können ihre Introns sogar selbst entsorgen - sie sind gewissermaßen ihre eigene Schere. Im Brachsenkraut fanden die Bonner Botaniker nun einen noch exotischeren Mechanismus: Dort ist die Bauanleitung eines bestimmten Proteins im Laufe der Evolution innerhalb eines Introns zerbrochen. Um dieses Protein herzustellen, muss man also zwei verschiedene Kopien aus der Bibliothek ausleihen. Beide Kopien enden mit einer Intronhälfte, die herausgeschnitten werden muss. Die beiden Reste müssen dann noch passend zusammengeklebt werden, damit die Bauanleitung komplett ist.

Das hört sich ziemlich komplex an. Und dennoch scheinen die beiden Kopien dafür nicht einmal fremde Hilfe zu benötigen. Hand in Hand arbeiten sie wie Schere und Klebstoff: Sie entfernen den Datenmüll und verknüpfen den Rest zu einer lesbaren Kopie, die die komplette Bauanleitung des Proteins enthält. Das Phänomen nennt sich "trans-spleißen" und wurde für diese Art von Introns zum ersten Mal nachgewiesen. Felix Grewe, der über Isoetes seine Doktorarbeit schreibt: "Das es ein interessantes Thema sein würde, war mir klar - mit so vielen molekularen Neuigkeiten hatten wir aber nicht gerechnet." Volker Knoop ergänzt: "Und es bleibt spannend: Warum die DNA-Evolution in den Mitochondrien bei Pflanzen in den letzten 500 Millionen Jahren so exotisch und ganz anders verlief als bei Tieren, wissen wir noch nicht."

Die Studie ist in der Zeitschrift "Nucleic Acids Research" erschienen.

Kontakt:
Professor Dr. Volker Knoop
Institut für Zelluläre und Molekulare Botanik der Uni Bonn
Telefon: 0228/73-6466
E-Mail: volker.knoop@uni-bonn.de
Felix Grewe
Telefon: 0228/73-5507
E-Mail: mail@felixgrewe.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise