Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Urpflanze mit verrückter genetischer Bürokratie

08.06.2011
„Je oller, je doller“ – diese Beschreibung trifft durchaus auf die genetische Ausstattung eines der ältesten überlebenden Vertreter der Gefäßpflanzen zu: Selaginella, der Moosfarn.

Botaniker der Universität Bonn staunten nicht schlecht, als sie das Erbgut der Moosfarn-Mitochondrien komplett entschlüsselt hatten: Die DNA der „Zellkraftwerke“ besteht aus nur noch 20 Genen – bisheriger Minusrekord im Pflanzenreich. In diesen 20 Genen gibt es allerdings über 2000 fehlerhafte Stellen, die bei jedem Kopiervorgang aufs Neue korrigiert werden müssen.

Für jede dieser fehlerhaften Positionen leistet sich die Pflanze einen eigenen Korrektor, einen so genannten RNA-Editor – insgesamt so viele wie nirgends sonst bisher im Pflanzenreich. Die Studie erscheint in der Zeitschrift „Genome Biology and Evolution“ (doi:10.1093/gbe/evr027).

Der Moosfarn Selaginella moellendorffii ist ein Überlebender aus uralten Zeiten. Damals, im Karbon, vor etwa 350 Millionen Jahren, bildeten hochgewachsene Verwandte von Selaginella zusammen mit Baumfarnen dichte Wälder. Die Gewächse konnten nur deshalb bis zu 40 Meter hoch wachsen, weil sie erstmals über Leitbündel verfügten, die Nährstoffe und Wasser bis ganz nach oben transportierten. Aus diesen ersten Gefäßpflanzen haben sich später die Samenpflanzen entwickelt, die heute auf der Erde vorherrschen.

Selaginella, die älteste überlebende Entwicklungslinie der Gefäßpflanzen, hat in nahezu unveränderter Form mehrere hundert Millionen Jahre überdauert. Ein Blick in das Erbgut dieser „pflanzlichen Fossilien“ erlaubt Forschern Einblicke in die Evolution vor 300-400 Millionen Jahren. Professor Volker Knoop und seine Mitarbeiter Julia Hecht und Felix Grewe vom Institut für Zelluläre und Molekulare Botanik der Universität Bonn haben einen ganz besonderen Teil des Moosfarn-Genoms entschlüsselt: das Erbgut der so genannten Mitochondrien.

Nur 20 Gene für ein Zellkraftwerk

Mitochondrien sind für den Stoffwechsel von Pflanzen und Tieren lebens¬notwendig. Weil Mitochondrien energiereiche Verbindungen produ¬zieren, werden sie oft auch als „Zellkraftwerke“ bezeichnet. Mitochondrien sind - neben dem Zellkern und den Chloroplasten - Zellbestandteile, die über eine eigene DNA verfügen. Weil pflanzliche Mitochondrien normalerweise ca. 60 Gene haben, waren die Bonner Botaniker erstaunt, als sie feststellten, dass das Mitochondriengenom von Selaginella moellendorffii aus gerade einmal 20 Genen besteht.

Doch die eigentliche Überraschung ergab sich für die Bonner Forscher aus dem Vergleich von DNA und RNA. Die RNA ist gewissermaßen eine mobile Kopie des DNA-Originals und wird am Ort der Proteinbildung als Bauplan benötigt. Der Vergleich zeigte, dass die Mitochondrien-DNA an 2100 Stellen Fehler hatte, die die RNA-Kopie nicht aufwies. Beim Kopieren musste also korrigiert worden sein. „Wir haben es hier mit einem sehr komplexen, aber sehr effizienten Korrekturmechanismus zu tun – in einer extremen Form, wie wir es bisher noch nie gesehen haben“, erläutert Professor Knoop. Für jede einzelne fehlerhafte Position gibt es vermutlich eigene Editorproteine, die den falschen Code auf der DNA in einen richtigen auf der RNA korrigieren.

Vergammelte Gen-Bibliothek, verrückte Gen-Bürokratie

Man kann sich die Mitochondrien-DNA von Selaginella wie eine uralte, vergammelte Bibliothek vorstellen: Viele Bücher sind so alt, dass die Schrift nicht mehr korrekt lesbar ist. Darum werden Abschriften in lesbarer Form hergestellt. Für jedes einzelnes Buch gibt es einen eigenen Korrektor. Nur er kennt die korrekte Schreibweise des einen Buches. Nun ist es aber so, dass die Bauanleitung des Korrektors selbst wieder in einem Buch einer ganz anderen Bibliothek steckt – und dieses Buch ist auch nicht vor Fehlern gefeit.

Auf die molekulare Ebene übertragen heißt das: Der Code des Editorproteins, das eine fehlerhafte Stelle der Mitochondrien-DNA korrigiert, steht auf der DNA im Zellkern. „Das ist natürlich eine ganz besondere Herausforderung, wie die beiden seit mehr als eine Milliarde Jahren koexistierenden Genome miteinander im Gespräch bleiben. Es sieht aus wie eine verrückte genetische Bürokratie, ein überreguliertes, selbst erhaltendes System von kafkaeskem Ausmaß“, wundert sich Volker Knoop.

Was hat die Pflanze davon?

Ein großer Aufwand, den die Pflanze betreibt. Die Frage lautet: Was hat Selaginella von einem so übertriebenen RNA-Editing? Gibt es einen bestimmten Nutzen oder handelt sich eher um ein Überbleibsel der Evolution als die „niederen“ Moose sich zu den ersten Gefäßpflanzen entwickelten? Die Chancen, dass die Bonner Forscher diese Fragen bald beantworten können, stehen so gut wie nie. Denn ein internationales Forscherkonsortium hat jüngst das komplette Kerngenom von Selaginella moellendorffii entschlüsselt und die Ergebnisse in der Fachzeitschrift „Science“ veröffentlicht. Ein detaillierter Vergleich zwischen Mitochondrien- und Kern-DNA könnte ein interessantes „Gespräch“ enthüllen.

Kontakt:
Professor Dr. Volker Knoop
Institut für Zelluläre und Molekulare Botanik
Telefon.: 0228/73-6466
E-Mail: volker.knoop@uni-bonn.de
Dipl.-Biol. Felix Grewe
Telefon: 0228/73-5507
E-Mail: mail@felixgrewe.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics