Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unentbehrliche Gäste: Vorleben beleuchtet

06.12.2012
Es werde Licht: Ein internationales Konsortium unter Marburger Beteiligung hat die Genome von Algen analysiert, deren Zellen die Überbleibsel fremder Arten enthalten, die den Wirtsorganismen die Energiegewinnung durch Photosynthese ermöglichen.
Die Wirte haben das Erbgut der Dauergäste nicht vollständig in ihre Zellkerne transferiert, weil die Erbinformation dabei hätte verlorengehen können, vermuten die Wissenschaftler. Sie veröffentlichen ihre Ergebnisse in der aktuellen Ausgabe des Wissenschaftsmagazins "Nature", die am Donnerstag, den 6. Dezember 2012 erschienen ist.

„Wir haben erstmals die Kerngenome zweier einzelliger Algen sequenziert, die eine bemerkenswerte genetische und zelluläre Komplexität aufweisen“, schreiben die Autoren, zu denen Professor Dr. Stefan Rensing, Professor Dr. Uwe Maier, Dr. Franziska Hempel, Aikaterini Symeonidi und Dr. Stefan Zauner von der Philipps-Universität gehören. Zellen enthalten eine Reihe so genannter Organellen – zelluläre Reaktionsräume, die lebenswichtige Aufgaben wie Energieumwandlung oder Photosynthese erfüllen. Diese Organellen sind aus ehemals eigenständigen Zellen entstanden, die von den Vorfahren der Wirtsorganismen in grauer Vorzeit integriert wurden.
Meist handelt es sich dabei um umgewandelte Bakterien; nicht so bei manchen Algen: Diese lernten Photosynthese, indem sie andere Pflanzenzellen mitsamt deren bereits bestehenden Organellen übernahmen, den so genannten Chloroplasten. Man spricht von sekundärer Endosymbiose. Indem die Wirte ihre neuen Mitarbeiter weiter beschäftigen, können sie Sonnenlicht nutzen, um Nährstoffe aufzubauen.

Was nicht diesem Zweck dient, geht normalerweise im Laufe der Evolution verloren. In ein paar wenigen Ausnahmefällen enthalten die symbiotischen Organellen jedoch noch stark verkleinerte Zellkerne, die vom Ursprungsorganismus stammen – so bei Cryptophyten und Chlorarachniophyten.
Warum bleibt der Zellkern hier erhalten? Um dies herauszufinden, ermittelte der internationale Forschungsverbund erstmals, welche Sequenzen die vier Kerngenome zweier einschlägiger Arten aufweisen. Das Ergebnis: Die beiden Restkerne enthalten nur einen Bruchteil der Gene, die frei lebende Verwandte aufweisen. Wie die Autoren berichten, weisen viele der verbliebenen Erbanlagen keinerlei Ähnlichkeit zu bekannten Genen auf. Dennoch steuern sie lebenswichtige Prozesse, die in diesen Organellen ablaufen, zum Beispiel die Translation, also die Umsetzung der Erbinformation in Proteine.

Eine größere Anzahl von Genen wanderte offenbar aus den sekundär erworbenen Organellen in den Zellkern des Wirts ein. Das Resultat nennen die Wissenschaftler ein „vielteiliges Mosaik von Genen, deren Herkunft nicht unbedingt etwas darüber aussagt, in welchem Teil der Zelle die Genprodukte ihre Funktion ausüben.“

Freundliche Übernahme: Bei der sekundären Endosymbiose wandert erst ein Bakterium (grün) in den Primärwirt (blau) ein, den sich dann ein Sekundärwirt einverleibt (rot); dabei wird auch die DNA übertragen.

(Abbildung: John M. Archibald, Dalhousie University, Canada)

Uwe Maier ist Mitglied im „LOEWE-Zentrum für synthetische Mikrobiologie“ der Philipps-Universität; er und sein Marburger Team trugen unter anderem dazu bei, Sequenzdaten bereitzustellen, außerdem identifizierten sie kodierte Proteine und ermittelten, wo diese sich befinden. Stefan Rensings Arbeitsgruppe am „BIOSS Centre for Biological Signalling Studies“, dem Exzellenzcluster der Albert-Ludwigs-Universität Freiburg, half bei der Identifikation der Proteine, die in die Organellen importiert werden, analysierte Kontaminationen und Duplikationsereignisse sowie alle Proteine, die an der Regulation der Transkription beteiligt sind.

Originalveröffentlichung: Bruce A. Curtis & al.: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs, Nature (6.12.2012), DOI: 10.1038/nature11681

Weitere Informationen:

Ansprechpartner:
Professor Dr. Stefan Rensing,
Fachgebiet Zellbiologie
E-Mail: stefan.rensing@biologie.uni-marburg.de
Professor Dr. Uwe Maier,
Fachgebiet Zellbiologie und „LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO)“
Tel.: 06421/28-21543
E-Mail: maier@biologie.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie