Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umgedrehte Peptide im Immunsystem

23.11.2010
Die Ursachen von Autoimmunerkrankungen sind molekular weitgehend unverstanden. Umso wichtiger ist es, dass Wissenschaftler weitere Erkenntnisse über die Funktionsweise unseres Immunsystems gewinnen.

Wissenschaftler des Leibniz-Instituts für Molekulare Pharmakologie (FMP) haben in diesem Zusammenhang ein Phänomen entdeckt, das sämtliche Forscherkollegen bisher übersehen haben: Sie konnten zeigen, dass Peptide auf den Oberflächen von sogenannten MHC-Molekülen nicht nur in einer Richtung, sondern auch um 180° gedreht präsentiert werden können. Dies könnte vom Immunsystem als Angriffssignal verstanden werden. Sie berichten darüber in der aktuellen Online-Ausgabe von PNAS.

Wenn Erreger in den Körper eindringen, werden sie von Fresszellen des Immunsystems aufgenommen und in kurze Peptidschnipsel, die man Antigene nennt, zerlegt. Die Fresszellen enthalten zudem Proteine des Major Histocompatibility Complex Klasse II (MHCII). Die MHCII-Moleküle verbinden sich mit den Peptidschnipseln und schieben sie an die Zelloberfläche. Dort präsentieren sie diese wie eine Flagge anderen Immunzellen, den sogenannten T-Helferzellen. Die T-Helferzellen schließlich docken an den MHCII-Komplex samt Antigen an und lösen damit eine umfassende Immunantwort aus, wodurch die Eindringlinge im Körper schließlich vernichtet werden.

Hat der MHCII-Komplex nichts zu tun, wird seine Bindungsstelle durch ein eigens dafür zuständiges körpereigenes Peptid mit Namen CLIP geschützt. Dieses passt exakt in die Bindungstasche des MHCII-Komplexes. Aber auch andere körpereigene Peptide werden von den MHCII-Komplexen auf der Zelloberfläche präsentiert. Die T-Helferzellen haben nun im Laufe ihrer Reifung gelernt, die körpereigenen Peptide zu tolerieren und nicht anzugreifen. Wird diese Toleranz gebrochen kann es zu Autoimmunerkrankungen kommen. Der Präsentation von Peptiden auf der Zelloberfläche kommt also eine wesentliche Bedeutung bei Reaktionen des Immunsystems zu.

Die FMP-Forscher unter der Leitung von Christian Freund haben in diesem Zusammenhang eine entscheidende Entdeckung gemacht: Sie konnten zeigen, dass CLIP-Peptide in zwei verschiedenen Ausrichtungen in der Bindungstasche des MHC-Komplexes liegen können. „Auf Grund der Molekülstruktur des MHC-Komplexes und der CLIPs ist man bislang davon ausgegangen, dass es nur eine bestimmte Ausrichtung von CLIP und allen anderen Antigenen im Komplex geben kann. Niemand hat aber je nachgeschaut, ob das wirklich so sein muss“, sagt Christian Freund. Untersuchungen mit Röntgenstrukturanalyse und NMR-Spektroskopie haben nun gezeigt, dass das längliche CLIP-Molekül auch invertiert im MHC-Komplex eingebettet sein kann, so als würde man im Bett mit den Füßen auf dem Kopfkissen liegen. Mittels NMR konnten die Forscher das Umdrehen des CLIP-Peptids direkt beobachten. Andere Untersuchungen zeigten, dass das verkehrt herum liegende CLIP alle Eigenschaften eines funktionstüchtigen MHC-II-Peptidkomplexes hat und so theoretisch auch von T-Helferzellen erkannt werden kann.

Die Forscher haben Hinweise darauf, dass dieses Phänomen der zwei Ausrichtungen auch für andere körpereigene Peptide zutrifft. Und hier liegt auch die Brisanz ihrer Entdeckung. Für Christian Freund könnte dies ein Schlüssel zur Erklärung von fehlgeleiteten Immunprozessen sein: „Wenn T-Helferzellen aus irgendeinem Grund gelernt haben, nur die eine Ausrichtung im Komplex zu erkennen, kann es sein, dass sie die andere Ausrichtung als fremd einstufen und somit eine Immunreaktion auslösen“, sagt er.

Gemeinsam mit internationalen Kooperationspartnern wollen die Forscher nun herausfinden, ob und wo im Organismus solche ungewöhnlichen MHCII-Komplexe auftreten und inwieweit sie eine Rolle bei organspezifischen Autoimmunerkrankungen wie etwa Typ I Diabetes mellitus oder der Multiplen Sklerose spielen.

DOI:10.1073/pnas.1014708107

Kontakt:
Dr. Christian Freund, Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Tel.: 030-94793-181, E-Mail: freund@fmp-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics