Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurze Laserpulse machen Treibhausgas reaktionsfreudig

15.03.2018

Es ist ein lang gehegter Traum: Das träge Treibhausgas Kohlendioxid aus der Atmosphäre entfernen und es als Grundstoff für die chemische Industrie nutzen. Damit könnten gleich zwei große Probleme auf einmal angegangen werden, indem der Klimawandel eingedämmt und die Abhängigkeit von Erdöl reduziert wird. Physikochemiker der Universität Bonn sind im Begriff, zu dieser Vision wesentliche Beiträge zu leisten. Sie haben einen neuen Weg entdeckt, wie mit Hilfe von Laserpulsen eine sehr reaktionsfreudige Form des Kohlendioxids hergestellt werden kann. Die Ergebnisse sind vorab online erschienen und werden bald in der Druckausgabe des Fachjournals „Angewandte Chemie“ vorgestellt.

Die Natur macht es dem Menschen tagtäglich vor, wie sich auf elegante Weise das Kohlendioxid aus der Luft binden und in einen dringend benötigten Rohstoff umwandeln lässt. Mit ihren grünen Blättern betreiben die Pflanzen bei Lichteinstrahlung Fotosynthese. Aus Kohlendioxid und Wasser entstehen mit Hilfe des Sonnenlichts Sauerstoff und der dringend benötigte Energie- und Baustofflieferant Zucker.


Am Laser und Infrarotspektrometer: Prof. Dr. Peter Vöhringer (links) und Steffen Straub im Institut für Physikalische und Theoretische Chemie der Universität Bonn.

(c) Foto: Barbara Frommann/Uni Bonn

„Diesem Vorbild eifert der Mensch schon lange nach, um Kohlendioxid zum Beispiel auch für die chemische Industrie zu nutzen“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. Was das Konzept schwer umsetzbar macht ist, dass sich das Kohlendioxid kaum dazu bewegen lässt, neue Partnerschaften mit anderen Molekülen einzugehen.

Mit seinem Team hat der Physikochemiker nun einen neuen Weg entdeckt, wie das reaktionsträge und schwer zu bindende Treibhausgas in einer sehr reaktionsfreudigen Variante hergestellt werden kann. Die Forscher nutzten einen sogenannten Eisenkomplex: Im Zentrum befindet sich ein positiv geladenes Eisenatom, an dem mehrfach die Bestandteile des Kohlendioxids bereits gebunden sind.

Die Wissenschaftler schossen ultrakurze Laserpulse aus ultraviolettem Licht auf diesen Eisenkomplex, wodurch bestimmte Bindungen aufgebrochen wurden. Als Produkt entstand ein sogenanntes Kohlendioxid-Radikal, das auch mit einer gewissen Radikalität neue Verbindungen eingeht.

Solche Radikale verfügen in ihrer äußeren Hülle über ein einzelnes Elektron, das dringend mit einem anderen Molekül oder Atom eine dauerhafte Bindung eingehen möchte. „Es ist dieses ungepaarte Elektron, welches unser reaktionsfreudiges, an das zentrale Eisenatom gebundene Radikal-Anion von dem reaktionsträgen Kohlendioxid unterscheidet und für chemische Prozesse so vielversprechend macht“, erläutert Erstautor Steffen Straub aus Vöhringers Team. Die Radikale könnten wiederum die Grundbausteine für interessante chemische Produkte darstellen, wie zum Beispiel Methanol als Treibstoff oder Harnstoff für chemische Synthesen sowie Salicylsäure als Schmerzmedikament.

Spektrometer zeigt Moleküle bei der Arbeit

Mit ihrem Laser und Infrarotspektrometer, einer großen Apparatur im Keller des Instituts, schauen die Wissenschaftler den Molekülen quasi bei der Arbeit zu. Sie können damit die Verbindungen aus unterschiedlichen Atomen anhand eines „Fingerabdrucks“ identifizieren, indem das Spektrometer die charakteristischen Schwingungen der Moleküle misst. „Bei der Bildung des Kohlendioxid-Radikals innerhalb des Eisen-Komplexes verändern sich die Bindungen zwischen den Atomen, und dadurch verringert sich die Frequenz der für das Kohlendioxid typischen Schwingung“, erklärt Straub.

Mit kriminalistischem Spürsinn wiesen die Wissenschaftler nach, dass durch die Laserpulse tatsächlich das reaktionsfreudige Kohlendioxid-Radikal entsteht. Zunächst simulierte das Team am Rechner die Schwingungsspektren der Moleküle, anschließend verglich es die Berechnungen mit den Messungen - und in der Tat: Simulation und Experiment stimmten sehr gut überein.

Wie in einem „Molekülkino“ schoss das Spektrometer „Schnappschüsse“ in der unvorstellbaren zeitlichen Auflösung von Millionstel Milliardstel Sekunden. Anhand der Spektren - die den Einzelbildern eines Films entsprechen - lässt sich deshalb gleichsam in Zeitlupe nachweisen, wie sich der Eisenkomplex unter Laserbeschuss über mehrere Stufen verformt, die Bindungen aufbrechen und schließlich das Radikal entsteht.

„Unsere Ergebnisse haben das Potenzial, die Vorstellungen darüber, wie man das Treibhausgas Kohlendioxid der Atmosphäre entziehen und daraus wichtige chemische Produkte herstellen könnte, grundlegend zu verändern“, sagt Vöhringer. Allerdings müssten für einen großtechnischen Einsatz noch geeignete Katalysatoren entwickelt werden, weil für eine Umwandlung im großen Maßstab Laserpulse nicht effizient seien. „Unsere Ergebnisse liefern jedoch Anhaltspunkte dafür, wie ein solcher Katalysator designt werden müsste“, ergänzt der Wissenschaftler. Die aktuelle Studie sei übergreifend in den wichtigen Schlüsselforschungsbereichen zur Nachhaltigkeit und zugleich zur Materieforschung der Universität Bonn angesiedelt.

Publikation: Steffen Straub, Paul Brünker, Jörg Lindner, and Peter Vöhringer: An Iron Complex with a Bent, O-Coordinated CO2-Ligand Discovered by Femtosecond Mid-Infrared Spectroscopy, Angewandte Chemie (DOI: 10.1002/ange.201800672) und Angewandte Chemie International Edition (DOI: 10.1002/anie.201800672)

Kontakt:

Prof. Dr. Peter Vöhringer
Abteilung für Molekulare Physikalische Chemie
Institut für Physikalische und Theoretische Chemie
Tel. 0228/737050
E-Mail: p.voehringer@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics