Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transport nach einfachen Regeln

30.04.2010
Max-Planck-Forscher entschlüsseln, wie Zellen die räumliche Verteilung von Proteinen aufrecht erhalten

Alles Leben auf der Erde ist von Unordnung bedroht. In dieser Hinsicht gleicht eine Zelle einem Schiff, das in einem Meer von Unordnung zu sinken droht: Deshalb muss sie ständig unter Energieaufwand ihren Ordnungsgrad bewahren, um nicht unterzugehen - bildlich gesprochen muss das eindringende Wasser der Unordnung also permanent ausgepumpt werden.

Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben nun herausgefunden, wie Zellen die korrekte Verteilung von Proteinen in ihrem Innern sicherstellen. Demnach werden viele Proteine, die zur Zellmembran transportiert werden sollen, mit einem Fettsäureanker versehen, der sie in der Zellmembran verankert. Da sie von dort jedoch auch in die Membranen von Zellorganellen gelangen, wird der Anker von diesen Proteinen nach kurzer Zeit wieder entfernt. Dieses Leck stopft die Zelle im Gegensatz zum Transport zur Membran also unspezifisch. Die Forscher haben damit ein einfaches Prinzip offengelegt, nach dem Zellen die komplexe räumliche Verteilung von Proteinen steuern und damit einen hohen Ordnungszustand beibehalten. Die Ergebnisse eröffnen zudem möglicherweise neue Wege in der Krebstherapie. Denn in einer weiteren Studie konnten die Wissenschaftler die räumliche Verteilung des Krebsproteins Ras mit einem neuen Hemmstoff erfolgreich durcheinander bringen und so dessen Funktion stören. (Cell, 22. April 2010; Nature Chemical Biology, 25. April 2010)

Innerhalb einer Zelle müssen eine Vielzahl von Stoffen transportiert werden. Als Rangierbahnhof dient dabei der so genannte Golgi-Apparat. Im Inneren dieses von einer eigenen Membran umgebenen Organells werden Proteine und andere Substanzen funktions- und transportklar gemacht. Aus seiner Membran werden kleine Bläschen (Vesikel) abgeschnürt und zu ihren jeweiligen Zielorten dirigiert. Viele Proteine, die zur Zellmembran transportiert werden sollen, werden dazu mit einem Fettsäure-Molekül versehen. Durch diese so genannte Palmitoylierung erhalten die Membranproteine eine Art Adressaufkleber und werden zur Zellmembran befördert. Die Zelle stemmt sich mit diesem gerichteten Transport vom Golgi-Apparat zur Zellmembran gegen die andauernde "Leckage" in andere Membranen. Denn zusätzlich zur Zellmembran ist die Zelle angefüllt mit Membranen von Organellen, die jeweils über Vesikel miteinander in Verbindung stehen. Dadurch gelangen palmitoylierte Membranproteine, die ursprünglich nur für die Zellmembran vorgesehen waren, auch an andere Orte. Mit der Zeit wären diese Proteine also wahllos innerhalb der Zelle verteilt.

Die Dortmunder Forscher konnten mittels modernster Mikroskopieverfahren maßgeschneiderte molekulare Sonden in lebenden Zellen verfolgen und so den Aufenthaltsort und Transport palmitoylierter Proteine in Echtzeit analysieren. Dabei haben sie herausgefunden, dass die Palmitoylierung vor allem am Golgi-Apparat stattfindet. Von dort erreichen palmitoylierte Proteine an der Oberfläche der abgeschnürten Bläschen die Zellmembran. Damit sich die Proteine nicht in anderen Membranen anreichern, entfernen spezielle Enzyme den Fettsäureanker wahllos von allen palmitoylierten Proteinen. Die Proteine schwimmen dann so lange frei durch die Zelle, bis sie wieder in den Transportmechanismus des Golgi-Apparats eingeschleust werden. So stellt die Zelle sicher, dass fehlgeleitete Proteine kontinuierlich und schnell wieder ins Transportnetz eingespeist und an ihren korrekten Bestimmungsort transportiert werden. "Ein solcher Zustand, der sich nicht im Gleichgewicht befindet und nur unter ständigem Energieaufwand aufrecht erhalten werden kann, zeichnet alles Leben aus - im Gegensatz zu nichtlebenden komplexen Systemen wie Kristallen, die einen Gleichgewichtszustand bei minimaler Energie einnehmen", erklärt Philippe Bastiaens, Leiter der Abteilung Systemische Zellbiologie am Max-Planck-Institut für molekulare Physiologie. Die Forscher haben damit ein grundlegendes Prinzip des Lebens entdeckt.

Einfache Lösung für komplexe Aufgabe

Aber woher weiß die Zelle, welche Proteine im Golgi-Apparat einen Adressaufkleber für die Zellmembran erhalten sollen? Den Wissenschaftlern zufolge kann jedes Protein einen Fettsäureanker bekommen, wenn die Aminosäure Cystein leicht zugänglich an der Oberfläche des Proteins liegt. Es wird dann automatisch zur Zellmembran befördert. Für diese Transportvorgänge sind also keine Rezeptoren nötig, die spezifisch das zu transportierende Protein binden.

Dies ist ein faszinierendes Beispiel dafür, wie komplizierte Vorgänge durch ganz einfache physikalische und chemische Regeln gesteuert werden können. Auf den ersten Blick erscheint es enorm anspruchsvoll, diejenigen Proteine zu identifizieren, die an einen bestimmten Ort transportiert werden müssen sowie Falschtransporte zu erkennen und zu verhindern, dass sie sich vom Zielort weiter verbreiten. Die Zelle schafft dies aber auf ganz einfachem Wege ohne zusätzliche Rezeptoren oder Regulationsmechanismen. Auch andere selbstorganisierende Systeme wie beispielsweise Insektenstaaten funktionieren häufig nach relativ einfachen Prinzipien. Anders könnten sie ihre vielfältigen Aufgaben auch gar nicht bewältigen. "Diese Ergebnisse sind ein Meilenstein. Sie werden die Art verändern, wie künftig in der Zellbiologie geforscht wird. Denn nur wenn wir die Prinzipien kennen, nach denen das Leben funktioniert, werden wir es wirklich verstehen können. Die Fokussierung auf die vielen verschiedenen Signalwege innerhalb der Zelle helfen uns da nicht viel weiter", so Philippe Bastiaens.

Neuer Wirkstoff hemmt Krebs-Protein

Die Forschergruppe ging aber noch einen Schritt weiter und schuf die Grundlage für eine mögliche Anwendung der Erkenntnisse in der Krebstherapie. Ein prominenter Vertreter palmitoylierter Proteine ist das Ras-Protein. Mutationen im ras-Gen finden sich in vielen Tumoren. Es ist allerdings nur dann voll funktionstüchtig, wenn es in der Zellmembran verankert ist und nicht in andere Membranen gelangt. Die Forscher entwickelten daher den Hemmstoff Palmostatin B gegen das Enzym, das für die Abspaltung der Fettsäureanker verantwortlich ist. Wird dieses Enzym ausgeschaltet, bleibt das palmitoylierte Ras in der Zellmembran verankert und gelangt von dort in die Membran anderer Zellorganellen. "Dies war ein völlig neuer Ansatz, der eigentlich dem gesunden Menschenverstand widerspricht. Deswegen hat ihn auch die Pharmaforschung nie weiter verfolgt. Denn wir haben nicht den gerichteten Transport aus dem Golgi-Apparat gehemmt, sondern die wahllose Verteilung in der Zelle gefördert", erklärt Herbert Waldmann, der die Abteilung Chemische Biologie am Dortmunder Max-Planck-Institut leitet.

Mit Palmostatin B konnten die Wissenschaftler das Ras-Protein erstmals hemmen, ohne es gleich vollständig auszuschalten. Ist Ras nämlich völlig inaktiv, sterben auch gesunde Zellen. Die wahllose Verteilung innerhalb der Zelle unterdrückt dagegen nur die unheilvolle Wirkung des mutierten Ras-Proteins. Aus Krebszellen werden so wieder normale Zellen. Dank dieser Entdeckung könnten Ras-abhängige Tumore eines Tages schonend behandelt werden, ohne gesunde Zellen zu schädigen.

Originalveröffentlichung:

Oliver Rocks, Marc Gerauer, Nachiket Vartak, Sebastian Koch, Zhi-Ping Huang, Markos Pechlivanis, Jürgen Kuhlmann, Lucas Brunsveld, Anchal Chandra, Bernhard Ellinger, Herbert Waldmann, and Philippe I.H. Bastiaens
The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins

Cell, 22. April 2010

Frank J. Dekker, Oliver Rocks, Nachiket Vartak, Sascha Menninger, Christian Hedberg, Rengarajan Balamurugan, Stefan Wetzel, Steffen Renner, Marc Gerauer, Beate Schölermann, Marion Rusch, John W. Kramer, Daniel Rauh, Geoffrey J. Coates, Luc Brunsveld, Philippe Bastiaens, Herbert Waldmann
Small molecule inhibition of acyl protein thioesterase 1 (APT1) affects Ras localization and signaling

Nature Chemical Biology, 25. April 2010

Weitere Informationen erhalten Sie von:

Prof. Dr. Philippe Bastiaens
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: +49 (0)231 / 133 - 2200
E-Mail: philippe.bastiaens@mpi-dortmund.mpg.de
Prof. Dr. Herbert Waldmann
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: +49 (0)231 / 133 - 2400
E-Mail: herbert.waldmann@mpi-dortmund.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie