Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefe Einblicke in lebende Zellen

19.04.2011
Katrin Heinze macht Vorgänge in lebenden Zellen sichtbar, die mit bisherigen Methoden nicht wahrnehmbar sind. Dazu kombiniert die Physikerin am Rudolf-Virchow-Zentrum hochauflösende Konzepte der Fluoreszenzmikroskopie mit Kniffen aus den Materialwissenschaften.

Ob Krebsforscher, Immunbiologe oder Biomediziner: Jeder von ihnen untersucht Proteine, ihren Aufbau und wie sie interagieren. Die Forschung in diesem Bereiche ist kompliziert, Proteine lassen sich – vor allem in lebenden Zellen – nur schwer beobachten.

Eine Möglichkeit, molekulare Vorgänge in Zellen zu studieren, bietet die sogenannte Fluoreszenz-Mikroskopie. Dabei versehen die Forscher ausgewählte Proteine mit einem fluoreszierenden Farbstoff. Die Proteine werden dadurch im Mikroskop als ‚Leuchtpunkte‘ sichtbar und bestimmte Zellbestandteile können studiert werden. Verschiedenfarbige Farbstoffe ermöglichen sogar das Beobachten des Zusammenspiels verschiedener Zellbestandteile und ihrer unterschiedlichen Molekülarten.

Niedrige Auflösung als Hemmschuh für die Forschung

Die Fluoreszenzmikroskopie hat bislang den Nachteil, dass sie üblicherweise in ihrer Auflösung begrenzt ist. Wichtige Details, wie kleinste Zellstrukturen, kann sie oft nicht sichtbar machen. Die Gründe liegen in der Physik des Lichts selbst. Für die Fluoreszenzmikroskopie heißt das, dass Strukturen die kleiner als z.B. ein Bakterium sind, durch das Mikroskop nicht mehr korrekt zu erkennen sind. Sie erscheinen einfach als unscharfer ‚Punkt‘. In anderen Größenordnungen gilt das Gleiche: Wer einen Wald aus der Nähe betrachtet, sieht deutlich einzelne Bäume und Sträucher. Aus der Ferne gesehen, ist der gleiche Wald ‚unscharf‘, nur noch ein brauner Streifen mit einem grünen Dach.

Katrin Heinze, seit Januar diesen Jahres Leiterin einer Arbeitsgruppe am Rudolf-Virchow-Zentrum, will genau dieses Problem lösen. Dazu integriert sie Erkenntnisse aus den Materialwissenschaften in ihre Arbeit. Ihr Trick: Heinze verwendet neuartige Probenträger für ihre Zellproben, die in bestimmter Weise beschichtet sind. Diese sogenannten nanostrukturierten Oberflächen sind in der Lage, die Auflösung des Mikroskops deutlich zu erhöhen.

Metamaterial als Lichtverstärker

„Diese neuartigen Träger bestehen aus sogenannten Metamaterialien“, sagt die Wissenschaftlerin. Eines oder mehrere chemische Elemente liegen in Schichten übereinander, die nur wenige Nanometer dünn sind. Zur besseren Vorstellung: Ein Nanometer entspricht dem millionsten Teil eines Millimeters. Bei einem so dünnen Material entscheide die Struktur über seine Eigenschaften und nicht, wie im Normalfall, die chemische Zusammensetzung, sagt Heinze. Auf diese Art könnten Forscher Materialien herstellen, die über Fähigkeiten verfügen, die so in der Natur nicht vorkommen.

Durch den Einsatz dieser Metamaterialien als Probenträger steigerte Heinze die Auflösung ihrer Mikroskope deutlich. An lebenden Zellen konnte sie nun zeigen, wie sich kleine „Zellfüßchen“ an der Zellwand zur Fortbewegung heben und senken, und die Größe dieser Bewegung bestimmen: Je nach Abstand zwischen Füßchen und Metamaterial ändert sich die Frequenz des abgestrahlten Lichts. Die Farbe des abgestrahlten Lichts wird so zum Maß für die Entfernung.

Biophotonik und seine Anwendung

In einem weiteren Projekt untersucht Heinze eine kürzlich von ihr entdeckte Reaktion von Proteinen, die ebenfalls mit einem fluoreszierenden Farbstoff markiert sind. Die Wissenschaftlerin konnte zeigen, dass sich manche Proteine von ihren Bindungspartnern wie ‚auf Kommando‘ trennen, wenn sie mit einem Laser bestrahlt werden. „Diesen Effekt zu beobachten war eine Überraschung, da man bisher davon ausging, dass die Lichtbestrahlung in der Fluoreszenzmikroskopie ein gering-invasiver Eingriff ist, der die Proteinumgebung nicht entscheidend stört. Das scheint aber nicht uneingeschränkt zu stimmen“, sagt Heinze. Die genaue Ursache für diesen Effekt kennt die Forscherin noch nicht. Sie vermutet aber eine Sauerstoff-Radikalbildung aus den Fluoreszenzprozessen als Auslöser.

Als nützlich könnte sich Heinzes Entdeckung erweisen, wenn es darum geht, gezielt das Zusammenspiel zwischen verschiedenen Proteinen in lebenden Zellen zu regeln, also aktiv zu beeinflussen, wie es für biomedizinische Anwendungen wünschenswert wäre.

Physikerin im Reich der Biomedizin

Die Entscheidung, sich mit biophysikalischen Fragestellungen zu befassen, hat Katrin Heinze schon während ihres Physik-Studiums an der Universität Oldenburg getroffen. Dort belegte sie das Fach „Physik des Meeres“. Später spezialisierte sie sich auf Themen der molekularen Biophysik und Optik. Heinze promovierte am Max-Planck-Institut für biophysikalische Chemie in Göttingen und war im Anschluss als Postdoc am Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden und am Biozentrum der TU Dresden tätig. Katrin Heinze wurde von der Max-Planck Gesellschaft für ihre Doktorarbeit mit der Otto-Hahn-Medaille ausgezeichnet. Ein Fellowship ermöglichte ihr 2004 als Postdoc an der McGill University in Montreal zu forschen. Im Dezember 2006 wechselte Heinze an das Institut für Molekulare Pathologie (IMP) in Wien und leitete eine Arbeitsgruppe, die sich mit Fragestellungen aus der Biophotonik beschäftigte.

Seit Januar leitet Katrin Heinze die Arbeitsgruppe ‚Biophotonics‘ am Rudolf-Virchow-Zentrum im Bio-Imaging Center.

Das Bio-Imaging-Center

Das Center wurde 2005 am Rudolf-Virchow-Zentrum gegründet. Ziel ist es, neue bildgebende Verfahren für Schlüsselproteine zu entwickeln, zu etablieren und in die aktuelle biomedizinische Forschung zu integrieren. Gefördert werden die Gruppen vom Bayerischen Staat und der Universität Würzburg.

Kontakt: Dr. Katrin Heinze, Tel.: 0931/201-48717,
Mail: katrin.heinze@virchow.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics