Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

“Streckbank” für winzige Moleküle: TUM-Wissenschaftler erfassen Dynamik der Proteinfaltung

28.10.2011
Wissenschaftler der Technischen Universität München (TUM) haben einen wichtigen Schritt getan, um die Abläufe in biologischen Zellen besser zu verstehen.

Mit einer am TUM-Lehrstuhl für Biophysik entwickelten Methode können sie ein einzelnes Protein festhalten und auseinanderziehen. Die Streckvorrichtung – eine optische Pinzette für winzige Moleküle – macht die Faltung und Entfaltung von Proteinen kontinuierlich messbar. Bis zu ihrer endgültigen Faltung folgen Protein-Moleküle einer Vielzahl struktureller und kinetischer Pfade, die mitunter in Sackgassen oder auch in Schnellstraßen münden. Das berichten die Wissenschaftler in der aktuellen Ausgabe von Science.


Mit Hilfe einer Laserpinzette können TUM-Forscher einzelne Moleküle dehnen und strecken
Bild: Johannes Stigler / TUM

Wie die Proteine in ihre dreidimensionale Form gelangen, ist eine der wichtigsten Fragen der Biowissenschaften und der Medizin. Denn Fehler im Faltungsprozess von Proteinen sind für Krankheiten wie Alzheimer und Parkinson verantwortlich. Die Funktionen und auch die Fehlfunktionen von Proteinen werden größtenteils durch ihre Struktur bestimmt. Wissenschaftler der TU München verfolgen deshalb seit Jahren verschiedene Ansätze, die Faltungsprozesse besser zu verstehen. In ihren neuesten Experimenten untersuchen sie das Calmodulin-Molekül. Es gehört zu den häufigsten Eiweißen im menschlichen Organismus und fungiert als wichtiger Signalgeber für Zellabläufe.

Während Röntgenstrukturen „Schnappschüsse“ von der Faltung einzelner Moleküle machen, erzeugt der neuartige Ansatz von Prof. Matthias Rief und seinen TUM-Kollegen nun bewegte Bilder. Zwar sind diese Aufnahmen verschwommen, weil sie nur die Länge der Moleküle erfassen. Sie ermöglichen es aber, die Dynamik des Faltungsprozesses in einer neuen Genauigkeit zu untersuchen.

Neben Prof. Rief waren die TUM-Doktoranden Johannes Stigler, Fabian Ziegler, Anja Gieseke und Christof Gebhardt (jetzt Postdoc an der Harvard University) an den Experimenten beteiligt. Forschungsmittel des Institute for Advanced Study der TU München ermöglichten dem Lehrstuhl die Anschaffung einer ultra-stabilen und hoch auflösenden „optischen Pinzette“. Mithilfe von Laserstrahlen kann das Gerät auch kleinste Objekte wie zwischen Daumen und Zeigefinger festhalten.

Bevor das Calmodulin-Molekül gestreckt werden kann, wird es eingespannt. Dazu bringen es die Forscher zwischen zwei robusteren Molekülen des Proteins Ubiquitin ein. Rückstände der Aminosäure Cystein an den äußeren Enden dieses Molekül-Sandwiches ermöglichen die Verknüpfung mit Griffen aus DNA-Molekülen. Diese Griffe wiederum sind mit kleinen Glasperlen verbunden, die nur einen Mikrometer messen. Die Glasperlen – und mit ihnen das Calmodulin-Molekül – können dann mithilfe der optischen Pinzette auseinander gezogen werden. Mit dieser Versuchsanordnung konnten die Wissenschaftler das Protein in unterschiedliche Richtungen bis zu seiner vollen Länge dehnen und es mit nachlassender Spannung jeweils wieder in den Ausgangszustand versetzen. Gemessen wurden die Proteinlänge, die angelegten mechanischen Kräfte und die Dauer des Prozesses. Als Versuchsumgebung diente eine wässrige Lösung mit Calciumionen, die stabile Faltungsprozesse favorisiert und den natürlichen Bedingungen in der Zelle nahe kommt.

Die Versuchsergebnisse machen nun deutlich, dass die Faltungsprozesse von verschiedenen Teilbereichen des Calmodulin-Moleküls zwar eigenständig ablaufen, sich aber dennoch gegenseitig fördern oder blockieren können. “Die Faltung eines Calmodulin-Moleküls lässt sich mit einem komplizierten Geflecht von Pfaden vergleichen”, erklärt Prof. Matthias Rief. “Sie leiten Teile des Proteins durch unterschiedliche energetische Zustände wie durch Berge und Täler. Und während ein Faltungspfad in eine Sackgasse führt, mündet ein anderer womöglich in eine Schnellstraße. Über diese erreichen bestimmte Molekülteile dann ihre endgültige Faltung sehr viel schneller als das Gesamtmolekül selbst”, sagt Rief.

Zwar ist das Calmodulin-Molekül im Vergleich zu den meisten anderen menschlichen Proteinen ziemlich klein. Dennoch weist es eine komplizierte Faltung auf. “In der Natur sind sogar weitaus komplexere Strukturen die Regel. Mithilfe der Untersuchung einzelner Moleküle tragen wir schrittweise dazu bei, sie besser zu verstehen”, fasst Prof. Rief zusammen.

Das Forschungsprojekt “Protein Folding Mechanics” wurde durch die Deutsche Forschungsgemeinschaft (SFB 863 A2), das Institute for Advanced Study der TU München und das Elitenetzwerk Bayern unterstützt.

Originalpublikation:
Johannes Stigler, Fabian Ziegler, J. Christof M. Gebhardt, Matthias Rief: The Complex Folding Network of Single Calmodulin Molecules. Science, Oct. 28, 2011, pp. 512-516

DOI: 10.1126/science.1207598

Kontakt:
Prof. Matthias Rief
Lehrstuhl für Biophysik - Technische Universität München
James-Franck-Strasse
85748 Garching, Germany
Tel: +49 89 289 12471
E-Mail: mrief@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://bio.ph.tum.de/home/e22-prof-dr-rief/rief-home.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik