Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starrer Riegel hält Proteine in Form

12.10.2010
Marburger Chemiker haben ein Aminosäure-Imitat hergestellt, das sich in Proteine einbauen lässt, die dadurch ihre Beweglichkeit einbüßen. Die neue Verbindung soll es leichter machen, künstliche Proteine zu synthetisieren, deren räumliche Gestalt sich präzise vorhersagen lässt.

Das US-amerikanische Wissenschaftsmagazin „Proceedings of the National Academy of Sciences“ (PNAS) berichtet in seiner aktuellen Ausgabe über die Ergebnisse des Forscherteams um Professor Dr. Lars-Oliver Essen und Professor Dr. Armin Geyer von der Philipps-Universität (PUMa).

Proteine bestehen aus Ketten von Aminosäuren. In der Natur finden 20 Aminosäure-Typen Verwendung; neue, künstlich hergestellte Formen könnten jedoch zu Proteinen mit erwünschten Eigenschaften führen. „Weltweit suchen Chemiker und Biochemiker nach neuen Aminosäuren, die sich in Proteine integrieren lassen“, erklärt Senior-Autor Armin Geyer. Er und seine Kollegen sind auf diesem Weg nun einen großen Schritt weitergekommen. Die von ihnen beschriebene Verbindung geht nämlich Wechselwirkungen mit benachbarten Strukturen innerhalb des Proteins ein, in das sie eingebaut wird, und bestimmt dadurch dessen dreidimensionale Form.

Die Wissenschaftler nahmen sich ein synthetisches Minimal-Protein vor und ersetzten zwei seiner herkömmlichen Aminosäuren durch ein Imitat mit dem Namen „Hot=Tap“, das die Gestalt einer Haarnadelkurve hat. Hot=Tap hält die benachbarten Aminosäureketten wie ein Scharnier in einer vorhersagbaren Form fest. Als stabile Oberflächenstrukturen können sie ganz bestimmte Antikörper binden, vergleichbar einem Schlüssel, der nur in das entsprechende Schloss passt.

Während ein Protein normalerweise seine Gestalt in Grenzen ändern kann wie ein Gummiball, sorgt Hot-Tap für eine feste Form – Voraussetzung für spezifische Interaktionen, wie sie von Präparaten erwartet wird, die keine unerwünschten Nebenwirkungen hervorrufen. „Für planbare Architekturen von Aminosäureketten besteht großer Bedarf in der medizinischen Forschung“, erläutert Ko-Autor Lars-Oliver Essen. Die Wissenschaftler haben sich als ein erstes Anwendungsbeispiel die Alzheimer-Krankheit vorgenommen.

Originalveröffentlichung: Björn Eckhardt & al.: Structural characterization of a β–turn mimic within a protein-protein interface, PNAS, Vorab-Onlinepublikation 11. Oktober 2010

Weitere Informationen:
Ansprechpartner: Professor Dr. Armin Geyer,
Fachgebiet Organische Chemie
Tel.: 06421 28-22030
Sekr.: 06421 28-25595
E-Mail: geyer@staff.uni-marburg.de
Internet: http://www.staff.uni-marburg.de/~geyer/index.html
Professor Dr. Lars-Oliver Essen,
Fachgebiet Biochemie
Tel.: 06421 28-22032
E-Mail: essen@chemie.uni-marburg.de
Internet: http://www.uni-marburg.de/fb15/ag-essen

Johannes Scholten | idw
Weitere Informationen:
http://www.staff.uni-marburg.de/~geyer/index.html
http://www.uni-marburg.de/fb15/ag-essen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie