Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Stammzellen zu Stammzellen macht

03.04.2009
Dresdner Forscher finden neue Gene, die lenken, wann embryonale Stammzellen pluripotent bleiben oder ausdifferenzieren

Induzierte pluripotente Stammzellen (iPS-Zellen) gleichen embryonalen Stammzellen in einer entscheidenden Eigenschaft: Sie können jeden Zelltyp ausbilden, sind also - wie der Name schon sagt - pluripotent.


Mikroskopische Aufnahmen von undifferenzierten und differenzierten ES Zellen. Das rechte Bild zeigt die Differenzierung der ES Zellen nach Paf1C RNAi. Bild: Max-Planck-Institut für Molekulare Zellbiologie und Genetik

Deshalb gehört diesen iPS-Zellen möglicherweise die Zukunft in der Medizin - für therapeutische Ansätze im Kampf gegen neuronale Erkrankungen, als Therapie gegen Diabetes oder Lebererkrankungen. "Genau wegen ihres hohen medizinischen Potenzials wollen wir Stammzellen und iPS-Zellen noch besser verstehen: Welche Faktoren lassen in ihnen das embryonale Programm ablaufen und steuern ihre Pluripotenz?", sagt Frank Buchholz. Seine Arbeitsgruppe am Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden hat nun in einem genomweiten Screen alle Gene in Säugetierstammzellen gesucht, die die Expression von Oct4 modulieren. Dieses Protein reguliert, ob eine Zelle pluripotent bleibt oder eine Zellentwicklung eingeleitet wird. Dabei haben sie 296 Treffer gelandet. Dieser neue Datensatz gibt Aufschluss darüber, welche Gene eine Stammzelle braucht, um eine Stammzelle zu bleiben. (Cell Stem Cell, 2. April 2009)

Embryonale Stammzellen sind unsterbliche Multitalente - sie vermehren sich unbegrenzt und sie besitzen das Potenzial, jeden Zelltyp des erwachsenen Organismus auszubilden. Diese Pluripotenz macht sie für die Medizin interessant: Sie könnten als Ausgangsmaterial für hochspezialisierte Zellen - wie z.B. Nervenzellen - genutzt und gezüchtet werden, und nach einer Transplantation kranke und kaputte Zellen oder gar ganze Gewebe und Organe ersetzen. Für viele Krankheiten ist dieser Therapieansatz jedoch noch Zukunftsvision. Vor allem aber überwiegt das ethische Problem ihrer Gewinnung: Sie werden aus der Blastozyste, dem vier bis sieben Tage altem Embryo, entnommen - und dieser Embryo wird dabei zerstört.

Bei iPS-Zellen ist das anders. Auch sie sind Alleskönner - pluripotente Zellen. Doch sie haben einen großen Vorteil: Sie werden aus bereits ausdifferenzierten Zellen, zum Beispiel Hautzellen, gewonnen, die Forscher genetisch so verändern können, dass das embryonale Programm wieder eingeschaltet wird. Dies umgeht den ethischen Konflikt, der bei der Gewinnung von embryonalen Stammzellen besteht: Für iPS-Zellen muss kein Embryo zerstört werden. Erstaunlicherweise braucht man für die Umprogrammierung einer somatischen in eine iPS-Zelle nur wenige Faktoren, manchmal sogar nur einen. Der wichtigste Faktor hierbei wird von dem Gen Oct4 kodiert. So verwandeln sich neuronale Stammzellen zurück zu iPS-Zellen, wenn man artifiziell Oct4 in ihnen exprimiert.

Der Screen, den die Arbeitsgruppe um Frank Buchholz am Max-Planck-Institut für molekulare Zellbiologie und Genetik durchgeführt hat, offenbarte 296 Gene, die beeinflussen, wie konzentriert das Gen Oct4 in einer Zelle auftritt, ob die Zelle also pluripotent bleibt oder eine Ausreifung zu einer bestimmten Zellart einleitet. Da mithilfe von Oct4 iPS-Zellen herstellt werden können, liefern die Dresdner Forscher damit wichtige Anhaltspunkte, wie der Umprogrammierungsprozess in Zukunft perfektioniert werden kann. "Nur wenn wir die Balance aus Selbsterneuerung und Ausreifung von Stamm- und iPS-Zellen detailliert und systematisch verstanden haben, können wir für die Zukunft auch wirklich sichere Zellersatz-Therapien ohne Tumor-Risiko entwickeln", so Buchholz.

Darüber hinaus haben sich die Forscher einen Proteinkomplex besonders genau angeschaut: Paf1C. "Wir fanden heraus, dass dieser Komplex das Verhalten einer Stammzelle reguliert: Er bindet an viele Promotoren, also die Startbereiche von bestimmten Pluripotenz-Schlüsselgenen, wie z.B. dem Oct4-Gen. Wird Paf1C ausgeschaltet, produziert die Zelle weniger von den Pluripotenz-Schlüsselgenen - die Stammzelle differenziert. Ist Paf1C aber in erhöhten Mengen in der Stammzelle vorhanden, wird eine Ausreifung der Zelle blockiert - die Zelle bleibt embryonal, also pluripotent", erklärt Buchholz.

Originalveröffentlichung:

Li Ding, Maciej Paszkowski-Rogacz, Anja Nitzsche, Mikolaj Michal Slabicki, Anne-Kristin Heninger, Ralf Kittler,Magno Junqueira, Andrej Shevchenko, Herbert Schulz, Norbert Hubner, Michael Xavier Doss, Agapios Sachinidis, Juergen Hescheler, Roberto Iacone, Konstantinos Anastassiadis, A. Francis Stewart, M. Teresa Pisabarro, Antonio Caldarelli, Ina Poser, Mirko Theis und Frank Buchholz
A Genome-Scale RNAi Screen for Oct4 Modulators Defines a Role of the Paf1 Complex for Embryonic Stem Cell Identity

Cell Stem Cell, 2. April 2009

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften