Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannungsprüfer für schlagende Herzzellen

17.02.2015

Wissenschaftlern gelang es erstmals, den Strom durch Membrankanäle in schlagenden Herzmuskelzellen zu messen. Dazu kombinierten sie ein Rasterkraftmikroskop mit einem breit eingesetzten Verfahren zur Messung von elektrischen Signalen in Körperzellen.

Elektrische Impulse spielen in Körperzellen eine wichtige Rolle. So leiten etwa Nervenzellen mit solchen Impulsen Informationen entlang ihrer Ausläufer weiter, oder der Körper steuert damit die Kontraktion von Muskeln.

Die Impulse entstehen, wenn sich spezialisierte Kanalproteine in der Aussenhülle der Zellen öffnen und dadurch geladene Moleküle (Ionen) in die Zelle hinein oder aus der Zelle hinaus gelangen können. Diese Proteine werden Ionenkanäle genannt. Seit den 1970er Jahren steht Wissenschaftlern eine Methode zur Verfügung, um deren Aktivität zu messen.

Bisher wurde diese Technik vor allem an Zellen angewendet, die sich nicht bewegen. Elektrotechniker der ETH Zürich und Biologen der Uni Bern haben die Methode nun so weiterentwickelt, dass sie damit auf einfache Weise auch sich bewegende Zellen messen können, wie zum Beispiel schlagende Herzmuskelzellen in einer Zellkulturschale.

In der seit rund vierzig Jahren existierenden Methode führen Wissenschaftler eine Glas-Pipette an die Aussenmembran einer Zelle. Die Öffnung an der Spitze der Pipette ist so klein, dass sie nur einen Bruchteil der Zelloberfläche berührt. Idealerweise befindet sich auf diesem kleinen Fleck der Zellmembran genau ein Ionenkanal.

Das Innere der Pipette ist mit einer leitenden Flüssigkeit gefüllt, ausserdem befindet sich darin eine Elektrode. So ist es möglich, Unterschiede in der Ladung zwischen Zelläusserem und Zellinnerem zu messen (das heisst eine elektrische Spannung) sowie kurzfristige Änderungen in dieser Spannung, die auf die Aktivität der Ionenkanäle zurückgehen. Die Methode wird Patch-Clamp-Technik genannt, weil mit der Pipette ein Stück (englisch: patch) der Zellmembran festgehalten (englisch: to clamp) wird.

Rasterkraftmikroskop mit Mikro-Injektionsnadel

Die Forscher unter der Leitung von Tomaso Zambelli, Privatdozent am Institut für Biomedizinische Technik der ETH Zürich, und Hugues Abriel, Professor am Departement Klinische Forschung der Universität Bern, kombinierten nun diese Technik mit einem Rasterkraftmikroskop. Bei diesem sitzt eine Messspitze an einer beweglichen Halterung, einer sogenannten Blattfeder, um die Oberfläche eines mikroskopischen Objekts abzutasten.

Bereits vor einigen Jahren ist es den Forschenden gelungen, Messspitzen mit einem inneren Kanal herzustellen, womit sie computergesteuert Moleküle in eine Zelle injizieren konnten. Diese Technik wird mittlerweile vom ETH-Spin-off Cytosurge vermarktet. Zambelli und seine Kollegen entwickelten diese Technik jedoch noch weiter, indem sie die Mikro-Injektionsnadel mit einer Elektrode bestückten, um damit in Zusammenarbeit mit Wissenschaftlern um Abriel Patch-Clamp-Messungen durchzuführen. Den Erfolg dieses Unterfangens veröffentlichten die Forscher nun in der Fachzeitschrift Nano Letters.

Die Patch-Clamp-Technik ist nicht nur eine zentrale Methode in der zellbiologischen Grundlagenforschung, sondern kommt auch routinemässig bei der Entwicklung neuer Medikamente zum Einsatz. So muss die Pharmaindustrie im Rahmen des Zulassungsverfahrens von neuen Wirkstoffen von Gesetzes wegen prüfen, ob diese mit Ionenkanälen wechselwirken. Denn ein die Ionenkanäle blockierender Wirkstoff könnte bei Patienten zu schweren Herzrhythmusstörungen führen, was man tunlichst vermeiden möchte.

Längere Messungen und Automatisierung möglich

Bei der herkömmlichen Patch-Clamp-Technik führt ein Operateur die Pipette von Hand an die Zelle heran. Es existieren zwar auch automatisierte Verfahren, deren Anwendung ist jedoch limitiert. So müssen die zu untersuchenden Zellen etwa die gleiche Grösse und Form aufweisen, und sie dürfen sich nicht bewegen (wie das Herzmuskelzellen tun).

Beim neuentwickelten Verfahren wird die Mikro-Nadel über die Kraft-Messungen des Rasterkraftmikroskops computergesteuert in einem konstant geringen Abstand zur Zelloberfläche gehalten. «Dadurch ist der Kontakt zwischen Nadel und Zelle viel stabiler. Wir können so über eine längere Zeit messen und gar sich bewegende Zellen untersuchen», erklärt Zambelli.

Den Forschenden ist es damit erstmals gelungen, in schlagenden Herzmuskelzellen Spannungsänderungen über Ionenkanälen zu messen. Ausserdem sei es denkbar, auf dieser Grundlage ein automatisiertes Verfahren zu entwickeln, um damit beliebige Zellen unabhängig ihrer Form und Grösse zu messen, sagt Zambelli.

Literaturhinweis

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardia Cells. Nano Letters, 2. Februar 2015, doi: 10.1021/nl504438z [http://dx.doi.org/10.1021/nl504438z]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/02/spannungsp...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Wirkmechanismus von Tumortherapeutikum entdeckt
19.04.2018 | Universität Wien

nachricht Krebsmedikament bei der Arbeit beobachtet
19.04.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics