Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannungsprüfer für schlagende Herzzellen

17.02.2015

Wissenschaftlern gelang es erstmals, den Strom durch Membrankanäle in schlagenden Herzmuskelzellen zu messen. Dazu kombinierten sie ein Rasterkraftmikroskop mit einem breit eingesetzten Verfahren zur Messung von elektrischen Signalen in Körperzellen.

Elektrische Impulse spielen in Körperzellen eine wichtige Rolle. So leiten etwa Nervenzellen mit solchen Impulsen Informationen entlang ihrer Ausläufer weiter, oder der Körper steuert damit die Kontraktion von Muskeln.

Die Impulse entstehen, wenn sich spezialisierte Kanalproteine in der Aussenhülle der Zellen öffnen und dadurch geladene Moleküle (Ionen) in die Zelle hinein oder aus der Zelle hinaus gelangen können. Diese Proteine werden Ionenkanäle genannt. Seit den 1970er Jahren steht Wissenschaftlern eine Methode zur Verfügung, um deren Aktivität zu messen.

Bisher wurde diese Technik vor allem an Zellen angewendet, die sich nicht bewegen. Elektrotechniker der ETH Zürich und Biologen der Uni Bern haben die Methode nun so weiterentwickelt, dass sie damit auf einfache Weise auch sich bewegende Zellen messen können, wie zum Beispiel schlagende Herzmuskelzellen in einer Zellkulturschale.

In der seit rund vierzig Jahren existierenden Methode führen Wissenschaftler eine Glas-Pipette an die Aussenmembran einer Zelle. Die Öffnung an der Spitze der Pipette ist so klein, dass sie nur einen Bruchteil der Zelloberfläche berührt. Idealerweise befindet sich auf diesem kleinen Fleck der Zellmembran genau ein Ionenkanal.

Das Innere der Pipette ist mit einer leitenden Flüssigkeit gefüllt, ausserdem befindet sich darin eine Elektrode. So ist es möglich, Unterschiede in der Ladung zwischen Zelläusserem und Zellinnerem zu messen (das heisst eine elektrische Spannung) sowie kurzfristige Änderungen in dieser Spannung, die auf die Aktivität der Ionenkanäle zurückgehen. Die Methode wird Patch-Clamp-Technik genannt, weil mit der Pipette ein Stück (englisch: patch) der Zellmembran festgehalten (englisch: to clamp) wird.

Rasterkraftmikroskop mit Mikro-Injektionsnadel

Die Forscher unter der Leitung von Tomaso Zambelli, Privatdozent am Institut für Biomedizinische Technik der ETH Zürich, und Hugues Abriel, Professor am Departement Klinische Forschung der Universität Bern, kombinierten nun diese Technik mit einem Rasterkraftmikroskop. Bei diesem sitzt eine Messspitze an einer beweglichen Halterung, einer sogenannten Blattfeder, um die Oberfläche eines mikroskopischen Objekts abzutasten.

Bereits vor einigen Jahren ist es den Forschenden gelungen, Messspitzen mit einem inneren Kanal herzustellen, womit sie computergesteuert Moleküle in eine Zelle injizieren konnten. Diese Technik wird mittlerweile vom ETH-Spin-off Cytosurge vermarktet. Zambelli und seine Kollegen entwickelten diese Technik jedoch noch weiter, indem sie die Mikro-Injektionsnadel mit einer Elektrode bestückten, um damit in Zusammenarbeit mit Wissenschaftlern um Abriel Patch-Clamp-Messungen durchzuführen. Den Erfolg dieses Unterfangens veröffentlichten die Forscher nun in der Fachzeitschrift Nano Letters.

Die Patch-Clamp-Technik ist nicht nur eine zentrale Methode in der zellbiologischen Grundlagenforschung, sondern kommt auch routinemässig bei der Entwicklung neuer Medikamente zum Einsatz. So muss die Pharmaindustrie im Rahmen des Zulassungsverfahrens von neuen Wirkstoffen von Gesetzes wegen prüfen, ob diese mit Ionenkanälen wechselwirken. Denn ein die Ionenkanäle blockierender Wirkstoff könnte bei Patienten zu schweren Herzrhythmusstörungen führen, was man tunlichst vermeiden möchte.

Längere Messungen und Automatisierung möglich

Bei der herkömmlichen Patch-Clamp-Technik führt ein Operateur die Pipette von Hand an die Zelle heran. Es existieren zwar auch automatisierte Verfahren, deren Anwendung ist jedoch limitiert. So müssen die zu untersuchenden Zellen etwa die gleiche Grösse und Form aufweisen, und sie dürfen sich nicht bewegen (wie das Herzmuskelzellen tun).

Beim neuentwickelten Verfahren wird die Mikro-Nadel über die Kraft-Messungen des Rasterkraftmikroskops computergesteuert in einem konstant geringen Abstand zur Zelloberfläche gehalten. «Dadurch ist der Kontakt zwischen Nadel und Zelle viel stabiler. Wir können so über eine längere Zeit messen und gar sich bewegende Zellen untersuchen», erklärt Zambelli.

Den Forschenden ist es damit erstmals gelungen, in schlagenden Herzmuskelzellen Spannungsänderungen über Ionenkanälen zu messen. Ausserdem sei es denkbar, auf dieser Grundlage ein automatisiertes Verfahren zu entwickeln, um damit beliebige Zellen unabhängig ihrer Form und Grösse zu messen, sagt Zambelli.

Literaturhinweis

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardia Cells. Nano Letters, 2. Februar 2015, doi: 10.1021/nl504438z [http://dx.doi.org/10.1021/nl504438z]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/02/spannungsp...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie