Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannungsprüfer für schlagende Herzzellen

17.02.2015

Wissenschaftlern gelang es erstmals, den Strom durch Membrankanäle in schlagenden Herzmuskelzellen zu messen. Dazu kombinierten sie ein Rasterkraftmikroskop mit einem breit eingesetzten Verfahren zur Messung von elektrischen Signalen in Körperzellen.

Elektrische Impulse spielen in Körperzellen eine wichtige Rolle. So leiten etwa Nervenzellen mit solchen Impulsen Informationen entlang ihrer Ausläufer weiter, oder der Körper steuert damit die Kontraktion von Muskeln.

Die Impulse entstehen, wenn sich spezialisierte Kanalproteine in der Aussenhülle der Zellen öffnen und dadurch geladene Moleküle (Ionen) in die Zelle hinein oder aus der Zelle hinaus gelangen können. Diese Proteine werden Ionenkanäle genannt. Seit den 1970er Jahren steht Wissenschaftlern eine Methode zur Verfügung, um deren Aktivität zu messen.

Bisher wurde diese Technik vor allem an Zellen angewendet, die sich nicht bewegen. Elektrotechniker der ETH Zürich und Biologen der Uni Bern haben die Methode nun so weiterentwickelt, dass sie damit auf einfache Weise auch sich bewegende Zellen messen können, wie zum Beispiel schlagende Herzmuskelzellen in einer Zellkulturschale.

In der seit rund vierzig Jahren existierenden Methode führen Wissenschaftler eine Glas-Pipette an die Aussenmembran einer Zelle. Die Öffnung an der Spitze der Pipette ist so klein, dass sie nur einen Bruchteil der Zelloberfläche berührt. Idealerweise befindet sich auf diesem kleinen Fleck der Zellmembran genau ein Ionenkanal.

Das Innere der Pipette ist mit einer leitenden Flüssigkeit gefüllt, ausserdem befindet sich darin eine Elektrode. So ist es möglich, Unterschiede in der Ladung zwischen Zelläusserem und Zellinnerem zu messen (das heisst eine elektrische Spannung) sowie kurzfristige Änderungen in dieser Spannung, die auf die Aktivität der Ionenkanäle zurückgehen. Die Methode wird Patch-Clamp-Technik genannt, weil mit der Pipette ein Stück (englisch: patch) der Zellmembran festgehalten (englisch: to clamp) wird.

Rasterkraftmikroskop mit Mikro-Injektionsnadel

Die Forscher unter der Leitung von Tomaso Zambelli, Privatdozent am Institut für Biomedizinische Technik der ETH Zürich, und Hugues Abriel, Professor am Departement Klinische Forschung der Universität Bern, kombinierten nun diese Technik mit einem Rasterkraftmikroskop. Bei diesem sitzt eine Messspitze an einer beweglichen Halterung, einer sogenannten Blattfeder, um die Oberfläche eines mikroskopischen Objekts abzutasten.

Bereits vor einigen Jahren ist es den Forschenden gelungen, Messspitzen mit einem inneren Kanal herzustellen, womit sie computergesteuert Moleküle in eine Zelle injizieren konnten. Diese Technik wird mittlerweile vom ETH-Spin-off Cytosurge vermarktet. Zambelli und seine Kollegen entwickelten diese Technik jedoch noch weiter, indem sie die Mikro-Injektionsnadel mit einer Elektrode bestückten, um damit in Zusammenarbeit mit Wissenschaftlern um Abriel Patch-Clamp-Messungen durchzuführen. Den Erfolg dieses Unterfangens veröffentlichten die Forscher nun in der Fachzeitschrift Nano Letters.

Die Patch-Clamp-Technik ist nicht nur eine zentrale Methode in der zellbiologischen Grundlagenforschung, sondern kommt auch routinemässig bei der Entwicklung neuer Medikamente zum Einsatz. So muss die Pharmaindustrie im Rahmen des Zulassungsverfahrens von neuen Wirkstoffen von Gesetzes wegen prüfen, ob diese mit Ionenkanälen wechselwirken. Denn ein die Ionenkanäle blockierender Wirkstoff könnte bei Patienten zu schweren Herzrhythmusstörungen führen, was man tunlichst vermeiden möchte.

Längere Messungen und Automatisierung möglich

Bei der herkömmlichen Patch-Clamp-Technik führt ein Operateur die Pipette von Hand an die Zelle heran. Es existieren zwar auch automatisierte Verfahren, deren Anwendung ist jedoch limitiert. So müssen die zu untersuchenden Zellen etwa die gleiche Grösse und Form aufweisen, und sie dürfen sich nicht bewegen (wie das Herzmuskelzellen tun).

Beim neuentwickelten Verfahren wird die Mikro-Nadel über die Kraft-Messungen des Rasterkraftmikroskops computergesteuert in einem konstant geringen Abstand zur Zelloberfläche gehalten. «Dadurch ist der Kontakt zwischen Nadel und Zelle viel stabiler. Wir können so über eine längere Zeit messen und gar sich bewegende Zellen untersuchen», erklärt Zambelli.

Den Forschenden ist es damit erstmals gelungen, in schlagenden Herzmuskelzellen Spannungsänderungen über Ionenkanälen zu messen. Ausserdem sei es denkbar, auf dieser Grundlage ein automatisiertes Verfahren zu entwickeln, um damit beliebige Zellen unabhängig ihrer Form und Grösse zu messen, sagt Zambelli.

Literaturhinweis

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardia Cells. Nano Letters, 2. Februar 2015, doi: 10.1021/nl504438z [http://dx.doi.org/10.1021/nl504438z]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/02/spannungsp...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie