Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenschutz für Blaualgen: Wie sich Cyanobakterien vor zu viel Licht schützen

18.10.2010
RUB-Forscher beobachten Anpassung an Umweltbedingungen auf Proteinebene

Es mag widersprüchlich klingen, dass sich ein photosynthetischer Organismus vor Licht schützen muss, aber zu viel des Guten bleibt nicht ohne schädliche Folgen. Cyanobakterien (Blaualgen) haben verschiedene Strategien, mit denen sie sich vor zu viel Licht schützen.

Die molekularen Grundlagen eines dieser Schutzmechanismen haben Bochumer Biologen mit modernsten massenspektrometrischen Verfahren untersucht. Sie konnten beobachten, dass das Bakterium bei zu viel Licht eine „Stress“-Kopie eines wichtigen Proteins herstellt, das an der Photosynthese beteiligt ist.

Es erlaubt ihm, mehr Licht in harmlose Wärmestrahlung umzuwandeln. Lässt der Lichtstress nach, wird wieder das normale Protein hergestellt. Die Forscher berichten im Journal of Biological Chemistry.

Extrem anpassungsfähig

Cyanobakterien – ehemals Blaualgen genannt – sind so anpassungsfähig, dass sie von der Arktis über die Wüste bis hin zu heißen Quellen vorkommen. Marine Cyanobakterien sind ein wichtiger Klimafaktor, da sie erheblich zur globalen CO2-Fixierung beitragen. Als photosynthetische Bakterien können sie Licht in Energie umwandeln. Grundlage dafür ist die photosynthetische Elektronentransportkette.

Aktive Komponenten sind große Membranproteinkomplexe, die das Licht einfangen und für den Transport von Elektronen nutzen. Einer dieser Komplexe – das Photosystem 2 – katalysiert eine in der Natur einzigartige Reaktion: die Photolyse von Wasser. Als Nebenprodukt der Photolyse wird Sauerstoff freigesetzt, der die Grundlage für alles tierische Leben auf der Erde darstellt. „Somit waren es die Cyanobakterien, die vor ca. 3,5 Milliarden Jahren für eine sauerstoffhaltige Atmosphäre sorgten und damit letztendlich auch den Lebensraum des Menschen schufen“, unterstreicht Dr. Marc Nowaczyk.

Warum zu viel Licht schädlich ist

Auch wenn Cyanobakterien – wie alle photosynthetischen Organismen – Licht als Energiequelle für ihren Stoffwechsel nutzen, ist zu viel Licht schädlich. Insbesondere schwankende Lichtintensitäten führen zu einem Ungleichgewicht innerhalb der Elektronentransportkette und gegenüber nachgeschalteten Reaktionen. Das kann bewirken, dass Elektronen nicht schnell genug abgeführt werden können, was Rückreaktionen begünstigt. Besonders das Photosystem 2 ist als erster Komplex in der Kette von diesem Prozess betroffen: Es werden vermehrt Sauerstoffradikale gebildet, die extrem schädlich für die Zelle sind.

Trick der Cyanobakterien zur Vorbeugung

Das Photosystem 2 besitzt einen äußert effizienten und einzigartigen Reparaturmechanismus, der Gegenstand aktueller Forschung ist. „Hauptschädigungsort im Komplex ist das zentrale D1-Protein, das selektiv abgebaut und kontinuierlich durch eine neue Kopie ersetzt wird“, erklärt Dr. Nowaczyk. „Dieser Reparaturzyklus sorgt dafür, dass der photosynthetische Elektronentransport trotz Lichtstress aufrecht erhalten werden kann.“ Cyanobakterien haben darüber hinaus eine Strategie entwickelt, die schon vor einer Schädigung des Proteins ansetzt: Sie besitzen eine Genfamilie, die verschiedene D1-Proteine kodiert. Bereits in früheren Studien konnte durch Genexpressionsanalysen gezeigt werden, dass eine dieser Kopien nur unter Lichtstress gebildet wird. „Durch modernste massenspektrometrische Verfahren konnten wir diesen Effekt nun erstmals auch direkt auf Proteinebene nachvollziehen und durch Studien an D1-Mutanten Einblicke in die molekularen Grundlagen des Schutzmechanismus gewinnen“, so Dr. Nowaczyk.

Die alternative „Stress“-Kopie des D1-Proteins bewirkt, dass der Komplex insgesamt einen größeren Anteil des empfangenen Lichts in harmlose Wärmestrahlung umwandeln kann. Somit wird auf Kosten der Effizienz einer Schädigung vorgebeugt. Ändern sich die Lichtbedingungen erneut, wird wieder die „normale“ D1-Kopie gebildet und der Komplex nutzt das eingestrahlte Licht wieder äußerst effizient für die Photosynthese. „Gerade diese molekulare Variabilität ist die Grundlage für die erfolgreiche Besiedelung verschiedenster Lebensräume mit unterschiedlichsten Lebensbedingungen“, folgern die Forscher.

Titelaufnahme

Julia Sander, Marc Nowaczyk, Joachim Buchta, Holger Dau, Imre Vass, Zsuzsanna Deak, Marta Dorogi, Masako Iwai, and Matthias Rögner: Functional Characterization and Quantification of the Alternative PsbA Copies in Thermosynechococcus elongates and Their Role in Photoprotection. In: The Journal of Biological Chemistry, Vol. 285, Issue 39, 29851-29856, DOI 10.1074/jbc.M110.127142

Weitere Informationen

Dr. Marc Nowaczyk, Lehrstuhl für Biochemie der Pflanzen (Prof. Dr. Matthias Rögner), Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24549, E-Mail: Marc.M.Nowaczyk@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE