Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarzellen als Textilien

04.08.2014

Kostengünstig und effizient: Flexible faserförmige Perowskit-Solarzellen

Die ideale Stromversorgung für kleine, in Kleidungsstücke eingearbeitete elektronische Geräte sind textile Solarzellen. Chinesische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie jetzt neuartige faserförmige Solarzellen vor, die zu einem textilen Gewebe verarbeitet werden können.


Chinesische Wissenschaftler stellen Solarzellen vor, die zu textilen Geweben verarbeitet werden können. Die flexiblen Zellen basieren auf einem Perowskit-Material und Kohlenstoffnanoröhrchen.

(c) Wiley-VCH

Die flexiblen koaxialen Zellen basieren auf einem Perowskit-Material sowie Kohlenstoffnanoröhrchen und zeichnen sich durch eine exzellente Energieumwandlungseffizienz von 3,3% sowie niedrige Herstellungskosten aus.

Das Dilemma bei Solarzellen: Entweder sind sie kostengünstig und wenig effizient oder sie haben einen vernünftigen Wirkungsgrad, sind aber sehr teuer. Eine Lösung erhofft man sich von Solarzellen aus Perowskit-Materialien, die kostengünstiger als Silizium sind und keine teuren Zusatzstoffe benötigen. Perowskite sind Stoffe mit einer Kristallstruktur, die der des Perowkits, eines Calciumtitanats, entspricht.

Derartige Strukturen sind oft Halbleiter und absorbieren Licht vergleichsweise effizient. Vor allem aber können durch Licht angeregte Elektronen sehr weite Strecken innerhalb des Kristallgitters zurücklegen, bevor sie in ihren energetischen Grundzustand zurückfallen und wieder einen festen Platz einnehmen – eine Eigenschaft, die für Solarzellen sehr wichtig ist.

Das Team um Huisheng Peng von der Fudan University in Shanghai hat nun erstmals Perowskit-Solarzellen in Form flexibler Fasern entwickelt, die sich zu elektronischen Textilien verweben lassen. Das Herstellverfahren ist dabei vergleichsweise einfach und kostengünstig, da der Schichtaufbau durch Lösungsverfahren erfolgt.

Ein feiner Stahldraht als Anode wird zunächst mit einer kompakten n-halbleitenden Titandioxid-Schicht überzogen. Darauf wird eine Schicht aus porösem nanokristallinem Titandioxid aufgetragen. Sie liefert eine große Oberfläche für die anschließende Abscheidung des Perowskit-Materials CH3NH3PbI3.

Darauf kommt eine Schicht aus einem speziellen organischen Material. Abschließend wird eine transparente Schicht aus ausgerichteten Kohlenstoffnanoröhrchen kontinuierlich aufgewickelt, die als Kathode dient. Die resultierende Faser ist so fein und flexibel, dass sie sich zu Textilien weben lässt.

Die Perowskit-Schicht absorbiert Licht, das Elektronen anregt, freisetzt und dadurch eine Ladungstrennung in Elektronen und formal als positive Ladungsträger betrachtete „Löcher“ auslöst. Die Elektronen gelangen in das Leitungsband der kompakten Titandioxidschicht und weiter zur Anode.

Die „Löcher“ werden von der organischen Schicht aufgefangen. Die hohe Oberfläche und die hohe elektrische Leitfähigkeit der Kohlenstoffnanoröhrchen-Kathode begünstigen eine rasche Ableitung der Ladungen mit hohen photoelektrischen Strömen. Die Faser-Solarzelle erreicht eine Energieumwandlungseffizienz von 3,3% und übertrifft damit alle bisherigen koaxialen faserförmigen farbstoffsensibilisierten oder Polymer-Solarzellen.

Angewandte Chemie: Presseinfo 29/2014

Autor: Huisheng Peng, Fudan University, Shanghai (China) http://www.polymer.fudan.edu.cn/polymer/research/Penghs/main_en.htm

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201404973

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | GDCh

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie