Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sicherer Flug mit Zoom-Effekt - wie sich Fledermäuse orientieren

01.09.2014

Fliegen ohne zu sehen: Fledermäuse orientieren sich mithilfe von Schallwellen und der vielfältigen Echos, die ihre Umgebung zurückwirft. Ihr inneres Navigationssystem erweist sich dabei als ausgesprochen flexibel, wie eine Studie in Nature Communications zeigt.

Je näher Fledermäuse an einem Objekt vorbeifliegen, umso mehr Neuronen sind in dem Gehirnareal aktiv, das die akustischen Signale räumlich verarbeitet. Diese Informationen helfen den Flugkünstlern, blitzschnell zu reagieren und Hindernissen auszuweichen.

Nachtaktive Fledermäuse haben sich perfekt auf ein Leben ohne Licht eingestellt. Sie senden Ortungslaute aus, um aus dem zeitverzögerten Echo die Entfernung zu einem Hindernis oder Beutetier zu berechnen. In ihrem Gehirn existiert eine räumlich aufgelöste Karte für unterschiedliche Echolaufzeiten. Wie eine Studie der Technischen Universität München (TUM) erstmals zeigt, passt sich diese Karte dynamisch an äußere Bedingungen an.

Nahe Objekte erscheinen größer

Fliegen die Tiere eng an einem Hindernis vorbei, feuern mehr Neuronen als bei einem sicheren Abstand. Der Gegenstand erscheint auf der Gehirnkarte dann überproportional groß - als ob er herangezoomt würde. „Die Karte funktioniert ähnlich wie ein Navigationssystem im Auto und zeigt der Fledermaus den Weg“, erklärt Studienleiter Dr. Uwe Firzlaff vom TUM-Lehrstuhl für Zoologie. „Der entscheidende Unterschied: Wenn sich das Tier auf Kollisionskurs befindet, schlägt das Gehirn Alarm, indem es nahe Objekte stärker abbildet als entfernte.“

Fledermäuse stellen ihre Flugmanöver ständig auf neue Situationen ein, um Gebäuden, Bäumen oder anderen Tieren auszuweichen. Dabei ist auch die seitliche Positionsbestimmung wichtig. Daher nutzen die Tiere neben der Echolaufzeit zusätzliche räumliche Informationen. "Die Fledermäuse werten die Eigenbewegung aus und gleichen sie mit dem seitlichen Abstand auf Gegenstände ab", erläutert der Forscher.

Gehirn verarbeitet komplexe räumliche Informationen

Zusätzlich zur Laufzeit berücksichtigen die Tiere die Richtung, aus der das Echo zurückgeworfen wird. Außerdem vergleichen sie die Lautstärke ihrer Ruflaute mit den reflektierten Schallwellen und werten das Wellenspektrum des Echos aus. "Unsere Untersuchungen führen zu dem Schluss, dass Fledermäuse auf ihrer akustischen Karte wesentlich mehr räumliche Informationen abbilden als nur die Echolaufzeit.“

Die Ergebnisse erklären, wie sich schnelle Reaktionen auf äußere Reize in den Nervenzellen widerspiegeln: Im Gehirn der Fledermäuse vergrößert sich das aktive Areal, um relevante Informationen darzustellen. „Damit“, so Firzlaff abschließend, "haben wir möglicherweise einen grundlegenden Mechanismus entdeckt, wie Wirbeltiere ihr Verhalten flexibel auf wechselnde Umgebungen anpassen können."

Die Studie wurde aus Fördermitteln (FI1546/4) der Deutschen Forschungsgemeinschaft (DFG) finanziert.

Publikation:
Echo-acoustic flow dynamically modifies
the cortical map of target range in bats; Sophia K. Bartenstein, Nadine Gerstenberg, Dieter Vanderelst, Herbert Peremans & Uwe Firzlaff; Nature Communications, DOI: 10.1038/ncomms5668

Kontakt: 
Dr. Uwe Firzlaff
Technische Universität München
Lehrstuhl für Zoologie
Tel: +49 8161 71-2803
uwe.firzlaff@wzw.tum.de
http://zoologie.wzw.tum.de/

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31763/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Auto Echo Entfernung Ergebnisse Flug Gegenstand Gehirn Nature Nervenzellen Neuronen Signale TUM Zoologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics