Selbstorganisation statt Umwelt und Genen

Die Vorfahren von Spitzhörnchen (links) und Buschbaby (rechts) gehen seit mehr als 65 Millionen Jahren getrennte Wege. Dennoch gleichen sich Details ihrer Sehrinden auf verblüffende Weise. Wikimedia<br>

Selbstorganisierte Prozesse spielen neben Umwelteinflüssen und genetischen Faktoren eine entscheidende Rolle bei der Entwicklung des Gehirns. Zu diesem Ergebnis kommt ein internationales Team von Forschern, unter anderem aus Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Bernstein Center for Computational Neuroscience und der Universität Göttingen.

In den Gehirnen von Frettchen, Spitzhörnchen und Buschbabys entdeckten die Wissenschaftler eine überraschende Ähnlichkeit: Die Anordnung der Nervenzellen in den Sehrinden beider Arten folgt exakt demselben Design. Weder frühe Einflüsse der Umwelt noch Vererbung können diesen Befund erklären. Mit Hilfe eines mathematischen Modells jedoch, das beschreibt, wie sich neuronale Schaltkreise im Gehirn selbstorganisiert entwickeln, konnten die Wissenschaftler die Gehirnarchitektur exakt vorhersagen. (Science, Online-Ausgabe vom 4. November 2010)

Nervenzellen in der Sehrinde reagieren auf definierte Bildelemente wie Kanten und Konturen. Jede Zelle hat dabei eine so genannte Orientierungspräferenz: Sie ist auf bestimmte Kantenverläufe – wie etwa horizontale, vertikale oder schräge Kanten – spezialisiert. Stellt man sich Zellen gleicher Spezialisierung mit derselben Farbe eingefärbt vor, erhält man so die Karte der Orientierungspräferenz. Das fundamentale Strukturelement dieser Karten, das sich über die Sehrinde tausendfach wiederholt, bezeichnen Forscher als Pinwheel (deutsch: Windrad), denn Gebiete derselben Orientierungspräferenz treffen an einem Punkt zusammen – wie die Flügel eines Spielzeug-Windrades (siehe Abbildung 2).

Während frühere Arbeiten erwarten ließen, dass sich die Verteilung der Windräder in den Sehrinden verschiedener Arten stark unterscheiden, fanden die Forscher eine verblüffende Ähnlichkeit bei Frettchen, Spitzhörnchen und Buschbaby. Ein Erkennungszeichen dieses gleichen Designs ist die Dichte der Windrädchen. Diese und eine große Zahl anderer Merkmale stimmen bei diesen Arten genau überein. Auf einen vererbten genetischen Bauplan lässt sich dies jedoch nicht zurückführen. Denn der letzte gemeinsame Vorfahre von Frettchen, Spitzhörnchen und Buschbaby lebte vor mehr als 65 Millionen Jahren im Zeitalter der Dinosaurier. Die Gehirne hatten also reichlich Zeit, sich verschieden zu entwickeln. Zudem gibt es Säugetiere, die deutlich enger miteinander verwandt sind als die untersuchten Spezies und dennoch verschieden strukturierte Sehrinden aufweisen. Ebenso wenig bietet der Einfluss von Erfahrung auf die frühe Hirnentwicklung eine Erklärung. Die untersuchten Tierarten finden nach ihrer Geburt völlig verschiedene Umweltbedingungen vor.

In empirischen und theoretischen Untersuchungen zeigten die Forscher, dass sich die gleiche Windräderdichte am besten durch Selbstorganisationsprozesse in der Hirnentwicklung erklären lässt. Sobald die Tiere nach der Geburt zu sehen beginnen, bilden sich die Karten der Orientierungspräferenz nach und nach wie von selbst aus. Die mathematische Analyse neuronaler Selbstorganisation zeigte, dass bereits wenige Voraussetzungen ausreichen, um die beobachtete Nervenzellarchitektur hervorzubringen. Zu diesen gehört etwa, dass sich Nervenzellen über große Entfernungen direkt Signale zusenden können. Sind diese und wenige weitere Voraussetzungen erfüllt, stimmen sich die Nervenzellen im Modell während der Hirnentwicklung so aufeinander ab, dass ein so genanntes „quasiperiodisches Muster“ ihrer bevorzugten Orientierungen entsteht, ein Muster, das sich nie exakt wiederholt.

„Vertraute Beispiele für Selbstorganisationsprozesse sind etwa die La-Ola-Welle begeisterter Zuschauer, die sich bei Sportveranstaltungen über die Stadionränge ausbreitet, oder Stop-and-Go- Wellen im Autoverkehr, die ohne jede äußere Behinderung des Verkehrsflusses spontan auftreten können“, sagt Matthias Kaschube, Lewis-Sigler Fellow an der Princeton Universität und Erstautor der Studie. Bei diesen Beispielen, wie auch bei allen anderen Selbstorganisationsprozessen, gibt es weder einen versteckten „Lenker”, noch ein verstecktes „Drehbuch“, das die Systemelemente (die Sportfans oder die Verkehrsteilnehmer in obigen Beispielen) dazu zwingt zu tun, was sie tun. Die Bewegung der Elemente resultiert nur aus der Art, wie sie sich gegenseitig beeinflussen.

In den vergangenen Jahrzehnten haben Forscher für viele Systeme der unbelebten Natur ausgearbeitet, wie mathematische Modelle beim Verständnis solcher Selbstorganisationsprozesse helfen können. Wie Fred Wolf, Leiter der Untersuchung und theoretischer Physiker am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen betont, liefern die neuen Ergebnisse nun maßgeschneiderte mathematische Konzepte für das Verständnis der Wechselwirkungen neuronaler Elemente in der Sehrinde.

Media Contact

Dr. Birgit Krummheuer Max-Planck-Institut

Weitere Informationen:

http://www.ds.mpg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer