Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seesterne fressen viel CO2

08.01.2010
Bodenlebende Meerestiere nehmen mehr auf als bisher bekannt

Bodenlebende Meerestiere wie etwa Seesterne, Seegurken und Seeigel nehmen viel mehr Kohlenstoff auf als bisher bekannt. Zu diesem Schluss kommt eine Studie von Forschern der University of Southampton im Fachmagazin ESA Ecological Monographs. Rund 0,1 Gigatonnen Kohlenstoff werden von den Stachelhäutern - so der Name des Tierstamms - jährlich aufgenommen. Sie bilden damit eine beachtliche Kohlenstoffsenke.

Im Vergleich dazu nehmen die pelagischen Organismen - alle Phytoplankten und Algen - zwischen 0,4 und 1,8 Gigatonnen Kohlenstoff jährlich auf. Der Mensch pustet jährlich rund 5,5 Gigatonnen Kohlenstoff in die Luft.

Universell vorhandene Lebewesen

"Echinodermaten, so der lateinische Namen für die Stachelhäuter, gehören zu den vielfältigsten Lebewesen im Meer", so Bettina Riedel, Meeresbiologin an der Universität Wien, im pressetext-Interview. "Sie sind weltweit in jeder Zone, von den Tropen bis zu den subpolaren und polaren Meeren, vorhanden." Das Forschungsergebnis sei jedenfalls sehr überraschend, meint Riedel.

Stachelhäuter haben vielfältige Erscheinungsformen. Zum Tierstamm, der rund 6.300 Arten umfasst, gehören Seelilien, Seesterne, Schlangensterne, Seeigel und Seewalzen. Zum Aufbau ihres Kalkskeletts benötigen die Tiere Kalziumkarbonat, das sie aus dem Meerwasser nehmen.

Überraschendes Ergebnis

Das Forscherteam um Mario Lebrato hat bei adulten Stachelhäutern zunächst untersucht, welche Mengen an Kalziumkarbonat sie absorbieren und vor allem, was mit dem Kalk passiert, wenn die Tiere sterben. Dazu haben sie zahlreiche Stachelhäuter aus verschiedenen Regionen des Atlantischen Ozeans gesammelt, gereinigt, tiefgefroren, anschließend zu Pulver vermahlen und analysiert.

In ersten Berechnungen haben die Wissenschaftler für jene Tierarten, die sie gesammelt haben, die Kohlenstoffmenge festgestellt und sie anschließend hochgerechnet. Das Ergebnis bezeichnen auch andere Forscher, die nicht an der Studie teilgenommen haben, als überraschend. "Ich war überrascht über das Ausmaß der Werte. Der Forschungsansatz ist jedenfalls schlüssig", so der Ozeanograph Justin Ries von der University of North Carolina in Chapel Hill.

"Diese Werte öffnen uns die Augen. Ich denke, dass es sogar noch größere Mengen sind", meint der Meeresbiologe Craig Smith von der University of Hawaii in Manoa. "Der Grund dafür ist, dass in den äquatorialen Regionen eine noch höhere Stachelhäuter-Biomasse existiert, die bisher kaum erforscht ist."

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.soton.ac.uk
http://www.esajournals.org
http://www.marine.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE