Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwachpunkte im Genom aufspüren

19.03.2013
Wenn der Körper DNA-Strangbrüche nicht repariert, kann Krebs entstehen.

Besonders anfällig für diese Defekte sind Mitarbeiter in radiologischen Praxen und Atomkraftwerken sowie Flugpersonal, aber auch Krebspatienten während einer Chemotherapie. Ein neues Sequenzierungsverfahren erlaubt es, DNA-Strangbrüche während der Zellteilung in einer Petrischale zu kartieren.

Die DNA ist ein robuster Datenspeicher, doch sie hat auch Schwachpunkte. Dass wir in der Regel trotz der immer wieder auftretenden Strangbrüche nicht krank werden, dafür sorgen natürliche Reparaturmechanismen. Doch bisher weiß man wenig darüber, welche Regionen besonders störanfällig sind.

Zusammen mit Kollegen an der Universität Texas haben Wissenschaftler an der Goethe-Universität nun ein diagnostisches Verfahren entwickelt, mit dem man Brüche der DNA gezielt aufspüren kann. Das in der aktuellen Ausgabe von Nature Methods publizierte Verfahren könnte künftig dazu eingesetzt werden, stärker gefährdete Berufsgruppen und Patienten unter Chemotherapie zu überwachen.

Zu Strangbrüchen kann es bei jeder Verdopplung der DNA kommen, und damit bei jeder der lebensnotwendigen Zellteilungen der 10 bis 100 Billionen Zellen in unserem Körper. Äußere Faktoren wie UV-Strahlung, Röntgenstrahlung und kosmische Höhenstrahlung sind weitere auslösende Faktoren. Deshalb gehören Mitarbeiter in radiologischen Einrichtungen und Atomkraftwerken sowie Flugpersonal zu den Risikogruppen. Besonders gefährdet sind Krebspatienten, die eine Chemotherapie erhalten.

Könnte man frühzeitig feststellen, wann bei diesen Menschen die natürlichen Reparaturmechanismen versagen, würde das die Chancen für eine wirkungsvolle Therapie erhöhen. Mithilfe der neuen Methode lässt sich nun erstmals die Landschaft der genomischen Schwachstellen in einer Zelle kartieren, während sie sich in der Petrischale teilt.

„Die Methode kombiniert solide und fundamentale molekularbiologische Techniken, wie die DNA-Ligation, also die Verbindung zweier DNA-Fragmente mithilfe spezialisierter Enzyme, mit einer neuen Generation von Sequenzierungstechniken, die es erlauben, innerhalb weniger Stunden Millionen von DNA-Sequenzen zu entschlüsseln“, erklärt der Krebsforscher Dr. Nicola Crosetto. Er entwickelte das als BLESS bezeichnete Verfahren während seiner Zeit als Post-Doktorand am Institut für Biochemie II der Goethe Universität bei Prof. Ivan Dikic. Inzwischen arbeitet er am Massachusetts Institute of Technology in den USA. „Wir können das Verfahren genauso gut auf die nicht teilungsfähigen Blutzellen eines Patienten anwenden, oder auf Tumorgewebe“, ergänzt Crosetto.

Zu den ersten Nutznießern könnten Patienten mit Hodgkin Lymphom gehören, die eine lebensrettende, aber riskante Therapie mit DNA-Strang brechenden Wirkstoffen wie Bleomycin erhalten. Da die Gefahr besteht, dass sich sekundäre Tumoren bilden, müssen diese Patienten engmaschig überwacht werden. „Über die klinische Anwendung hinaus wollen wir mithilfe von BLESS herausfinden, wie innerhalb des Zellkerns robuste Genome entstehen und Sequenzen aufspüren, die anfälliger sind für Brüche. Möglicherweise können wir dann künftig für biotechnologische Anwendungen besonders starke Genome herstellen“, so Crosetto.

„BLESS ist ein wunderbares Beispiel für die erfolgreiche Zusammenarbeit von internationalen Forschergruppen mit ganz unterschiedlicher Expertise“, erklärt Ivan Dikic. „Sich in neue Gebiete vorzuwagen, ist immer ein Abenteuer. Aber in der Wissenschaft muss man mutig sein. Das kann sich, wie im aktuellen Fall, auszahlen und immense Auswirkungen auf eine große wissenschaftliche Gemeinschaft haben.“

BLESS steht für “Breaks Labeling, Enrichment on Streptavidin, and next-generation Sequencing”. Die Daten wurden von der Gruppe von Prof. Malgorzata Rowicka am Klinikum der Universität Texas analysiert. Weitere Kooperationspartner kommen aus Polen, Italien, Frankreich und den Vereinigten Staaten.

Publikation: Nicola Crosetto et al.: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing, Nature Methods, DOI: 10.1038/nmeth.2408

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Campus Niederrad, Tel: (069) 6301-6964; ivan.dikic@biochem2.de Dr. Nicola Crosetto, The van Oudenaarden Systems Biology Lab, Massachusetts Institute of Technology, ist via Skype erreichbar: nicola.crosetto (Cuneo, Italy); tel. 001-617-803-5432

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie