Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwachpunkte im Genom aufspüren

19.03.2013
Wenn der Körper DNA-Strangbrüche nicht repariert, kann Krebs entstehen.

Besonders anfällig für diese Defekte sind Mitarbeiter in radiologischen Praxen und Atomkraftwerken sowie Flugpersonal, aber auch Krebspatienten während einer Chemotherapie. Ein neues Sequenzierungsverfahren erlaubt es, DNA-Strangbrüche während der Zellteilung in einer Petrischale zu kartieren.

Die DNA ist ein robuster Datenspeicher, doch sie hat auch Schwachpunkte. Dass wir in der Regel trotz der immer wieder auftretenden Strangbrüche nicht krank werden, dafür sorgen natürliche Reparaturmechanismen. Doch bisher weiß man wenig darüber, welche Regionen besonders störanfällig sind.

Zusammen mit Kollegen an der Universität Texas haben Wissenschaftler an der Goethe-Universität nun ein diagnostisches Verfahren entwickelt, mit dem man Brüche der DNA gezielt aufspüren kann. Das in der aktuellen Ausgabe von Nature Methods publizierte Verfahren könnte künftig dazu eingesetzt werden, stärker gefährdete Berufsgruppen und Patienten unter Chemotherapie zu überwachen.

Zu Strangbrüchen kann es bei jeder Verdopplung der DNA kommen, und damit bei jeder der lebensnotwendigen Zellteilungen der 10 bis 100 Billionen Zellen in unserem Körper. Äußere Faktoren wie UV-Strahlung, Röntgenstrahlung und kosmische Höhenstrahlung sind weitere auslösende Faktoren. Deshalb gehören Mitarbeiter in radiologischen Einrichtungen und Atomkraftwerken sowie Flugpersonal zu den Risikogruppen. Besonders gefährdet sind Krebspatienten, die eine Chemotherapie erhalten.

Könnte man frühzeitig feststellen, wann bei diesen Menschen die natürlichen Reparaturmechanismen versagen, würde das die Chancen für eine wirkungsvolle Therapie erhöhen. Mithilfe der neuen Methode lässt sich nun erstmals die Landschaft der genomischen Schwachstellen in einer Zelle kartieren, während sie sich in der Petrischale teilt.

„Die Methode kombiniert solide und fundamentale molekularbiologische Techniken, wie die DNA-Ligation, also die Verbindung zweier DNA-Fragmente mithilfe spezialisierter Enzyme, mit einer neuen Generation von Sequenzierungstechniken, die es erlauben, innerhalb weniger Stunden Millionen von DNA-Sequenzen zu entschlüsseln“, erklärt der Krebsforscher Dr. Nicola Crosetto. Er entwickelte das als BLESS bezeichnete Verfahren während seiner Zeit als Post-Doktorand am Institut für Biochemie II der Goethe Universität bei Prof. Ivan Dikic. Inzwischen arbeitet er am Massachusetts Institute of Technology in den USA. „Wir können das Verfahren genauso gut auf die nicht teilungsfähigen Blutzellen eines Patienten anwenden, oder auf Tumorgewebe“, ergänzt Crosetto.

Zu den ersten Nutznießern könnten Patienten mit Hodgkin Lymphom gehören, die eine lebensrettende, aber riskante Therapie mit DNA-Strang brechenden Wirkstoffen wie Bleomycin erhalten. Da die Gefahr besteht, dass sich sekundäre Tumoren bilden, müssen diese Patienten engmaschig überwacht werden. „Über die klinische Anwendung hinaus wollen wir mithilfe von BLESS herausfinden, wie innerhalb des Zellkerns robuste Genome entstehen und Sequenzen aufspüren, die anfälliger sind für Brüche. Möglicherweise können wir dann künftig für biotechnologische Anwendungen besonders starke Genome herstellen“, so Crosetto.

„BLESS ist ein wunderbares Beispiel für die erfolgreiche Zusammenarbeit von internationalen Forschergruppen mit ganz unterschiedlicher Expertise“, erklärt Ivan Dikic. „Sich in neue Gebiete vorzuwagen, ist immer ein Abenteuer. Aber in der Wissenschaft muss man mutig sein. Das kann sich, wie im aktuellen Fall, auszahlen und immense Auswirkungen auf eine große wissenschaftliche Gemeinschaft haben.“

BLESS steht für “Breaks Labeling, Enrichment on Streptavidin, and next-generation Sequencing”. Die Daten wurden von der Gruppe von Prof. Malgorzata Rowicka am Klinikum der Universität Texas analysiert. Weitere Kooperationspartner kommen aus Polen, Italien, Frankreich und den Vereinigten Staaten.

Publikation: Nicola Crosetto et al.: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing, Nature Methods, DOI: 10.1038/nmeth.2408

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Campus Niederrad, Tel: (069) 6301-6964; ivan.dikic@biochem2.de Dr. Nicola Crosetto, The van Oudenaarden Systems Biology Lab, Massachusetts Institute of Technology, ist via Skype erreichbar: nicola.crosetto (Cuneo, Italy); tel. 001-617-803-5432

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics