Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schutzmechanismus für störungsfreie Zell-Zell-Kommunikation entdeckt

11.11.2013
Entwicklungsbiologen an der Universität Ulm ist es gelungen, einen wichtigen Schutzmechanismus zu identifizieren, der einen zentralen Signalübertragungsweg kontrolliert.

Dieser über das Protein Wnt vermittelte Signalübertragungsweg ist nicht nur für die Embryonalentwicklung wichtig, sondern kann in überaktivierter Form auch Krebs auslösen. Die Ulmer Forscher konnten nun nachweisen, dass das sogenannte Lypd6-Protein – sozusagen als Schutzschalter – für die Regulierung dieses Signalweges verantwortlich ist.


BU Zebrafischembryonen (Aufnahme: Gilbert Weidinger): Stereomikroskopische Durchlichtaufnahmen von lebenden Embryonen: Während Zebrafischembryonen 24 Stunden nach Befruchtung der Eizelle schon ein wohlgeformtes Nervensystem gebildet haben (oben), führt die Überaktivierung von Wnt Signalen zu einem Fehlen des Vorderhirns und der Augen (Mitte). Im Kontrast dazu bekommen Embryonen, in denen Wnt Signale blockiert wurden, einen "dicken Kopf", weil das Vorderhirn und die Augen zu groß und dafür der Schwanz zu klein werden (unten).

Die Kommunikation zwischen Zellen ist für viele physiologische Prozesse essentiell. Eine zentrale Rolle dabei spielt die sogenannte Signalübertragung. Zellen können damit auf äußere „Reize“ reagieren und diese als „Reizinformation“ ins Zellinnere weitergeben, wo diese Informationen wiederum den Ausschlag geben, ob die Zelle sich teilt, sich weiter ausdifferenziert oder ihr Arbeitsprogramm ändert.

Ein ganz besonderer Signalweg, der vor allem für die Embryonalentwicklung entscheidend ist, wird über so genannte Wnt-Proteine vermittelt. Diese Proteine docken an spezifische Rezeptoren in der Zellmembran an, die wiederum die Bindungsinformation als chemisches Signal ins Zellinnere weitergeben.

Wissenschaftler der Universität Ulm haben nun aufgedeckt, über welche molekularen Mechanismen dieser lebenswichtige Signalweg reguliert und kontrolliert wird. „Der Wnt-Signalweg ist unter anderem wichtig für die Entwicklung des Nervensystems, vor allem für die Herausbildung von Hirn- und Rückenmarksstrukturen“ erläutert Professor Gilbert Weidinger. Der Biologe vom Institut für Biochemie und Molekulare Biologie und sein Team haben hierzu die Embryonalentwicklung an Zebrafischen untersucht.

„An diesem Fisch kann man besonders gut beobachten, wie sich ein gestörter Wnt-Signalweg auf die Entwicklung der Kopf- und Schwanzstrukturen im Nervensystem auswirkt: da sich nur das Vorderhirn ausbildet, kommt es zu einem so genannten Dickkopf. Rückenmark, Mittel- und Hinterhirn verkümmern“, so Weidinger. Der gebürtige Österreicher, der sich schon während seines Studiums an der Uni Salzburg für entwicklungsbiologische Fragen sehr interessiert hat, forschte bereits für seine Promotion an der Universität Freiburg und dem MPI Göttingen an Zebrafischen.

Zum Spezialisten für Wnt-Signale wurde der Entwicklungsbiologe in seiner Zeit als Postdoc in Seattle (USA). Weidinger weiß daher genau, dass nicht nur die Störung des Signalweges, sondern auch dessen Überaktivierung böse Folgen haben kann: nämlich unkontrolliertes Zellwachstum bis hin zu Krebs.

„Solche zentralen Signalübertragungswege sind daher streng kontrolliert, damit entscheidende physiologische Prozesse wie die Embryogenese oder die Teilung von Stammzellen nicht aus der Bahn geraten“, erläutert der Entwicklungsbiologe. So können die Rezeptoren für das Wnt-Protein natürlicherweise nur in bestimmten Unterregionen der Zellmembran, sogenannten „rafts“, aktiviert werden, obwohl die Rezeptoren für dieses Protein (`LRP6´ und `Frizzled´) in der gesamten Membran zu finden sind.

Die Forscher konnten nun nachweisen, dass ein spezielles `Schalterprotein´ (Lypd6) die Aktivierung von Wnt-Signalen in den Membranunterregionen reguliert. Diese Proteine aus der Ly-Familie kommen natürlicherweise ausschließlich in den „raft“-Domänen der Membran vor. Die Wissenschaftler haben nun den experimentellen Nachweis erbracht, dass sich der Wnt-Signalweg nicht aktivieren lässt, wenn Lypd6 dort fehlt. „Und – was noch erstaunlicher ist – wir konnten zeigen, dass sich die Wnt-Rezeptoren auch in anderen Membrandomänen aktivieren lassen, wenn das `Schalterprotein´ Lypd6 experimentell dorthin verbracht wurde“, so Weidinger.

Die Forscher verfolgten dabei einen doppelten Ansatz: in vivo über die Embryonalentwicklung von Zebrafischen und in vitro –also in Zellkultur – mit Hilfe menschlicher Nierenzellen. „Mit Hilfe vielfältiger gentechnischer, biochemischer und zellphysiologischer Experimente haben wir einen neuen molekularen Mechanismus der Regulation von Wnt Signalen gefunden, der bisher völlig unbekannt war“, erklärt Dr. Günes Özhan. Die Wissenschaftlerin ist Postdoc am Biotechnologischen Zentrum der TU Dresden, wo Weidinger bis zum Antritt seiner Professur Anfang 2012 in Ulm 6 Jahre als Gruppenleiter tätig war. „In dieser Zeit haben wir auch den Grundstein gelegt zu der sehr spannenden Zusammenarbeit mit Entwicklungsbiologen und Biophysikern aus der damaligen Dresdner Arbeitsgruppe der LMU-Professorin Petra Schwille“, ergänzt Gilbert Weidinger.

„Lypd6 ist ein sehr wichtiges Protein, das bei vielen tierischen Lebewesen vorkommt. Doch seine Funktion und Bedeutung konnte bisher noch nicht wirklich geklärt werden. Wir haben nun zum ersten Mal zeigen können, welche wichtige Rolle es als `Schalterprotein´ für die Regulierung des Wnt-Signalweges spielt“, so das Forscherteam. Damit konnten die Wissenschaftler einen wichtigen Beitrag leisten zur Klärung des molekularen Schutzmechanismen, die dafür Sorge tragen, dass dieser essentielle Signalweg nicht unkontrolliert aktiviert wird und damit möglicherweise bestimmte Krebsformen auslöst. „Denn Embryonalentwicklung und Krebsentstehung sind sozusagen zwei Seiten einer Medaille. Mit dem Unterschied, dass das Zellwachstum im guten Fall kontrolliert verläuft und im schlechten eben nicht. Daher ist dieser Schutzmechanismus so wichtig“, fasst Weidinger zusammen. Veröffentlicht wurden die Ergebnisse des von der DFG unterstützten Forschungsprojektes in der renommierten Fachzeitschrift Developmental Cell.

Veröffentlichungshinweis:
http://www.cell.com/developmental-cell/abstract/S1534-5807%2813%2900450-4
Lypd6 Enhances Wnt/β-Catenin Signaling by Promoting Lrp6 Phosphorylation in Raft Plasma Membrane Domains; Günes Özhan, Erdinc Sezgin, Daniel Wehner, Astrid S. Pfister, Susanne J. Kühl, Birgit Kagermeier-Schenk, Michael Kühl, Petra Schwille and Gilbert Weidinger in:
Developmental Cell, Volume 26, Issue 4, 331-345, 26 August 2013
doi:10.1016/j.devcel.2013.07.020
Weitere Informationen:
Prof. Dr. Gilbert Weidinger, Institut für Biochemie und Molekulare Biologie, Universität Ulm;

Tel.: 07 31 / 500 – 232 90; Emil: gilbert.weidinger@uni-ulm.de;

Verantwortlich: Andrea Weber-Tuckermann

Weitere Informationen:
http://www.cell.com/developmental-cell/abstract/S1534-5807%2813%2900450-4

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics