Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schranken für die Entwicklung

02.12.2008
Protein verhindert das Ausbilden "falscher" Gewebe im späteren Kopfbereich des Embryos

Ein gut funktionierender Körper und eine straffe Organisation gehen Hand in Hand. Das gilt im Großen wie im Kleinen: Wie sonst könnte aus einer einzelnen Eizelle ein vollständiger Organismus entstehen?

Wie wichtig ein bestimmtes Protein bei der Zellorganisation im Embryo ist, zeigen nun Wissenschaftler des Max-Planck-Instituts für Neurobiologie, des MPI für Biochemie, der LMU und des Helmholtz Zentrums München. Die Untersuchung gibt der Basalmembran, die später auch bei der Metastasenbildung bestimmter Krebsarten eine wichtige Rolle spielt, eine ganz neue Bedeutung. Genes Dev., 1.12.2008

Mit seinen 220 verschiedenen Zell- und Gewebetypen ist der Mensch ein Wunder an Komplexität. Fast unglaublich, dass all dies aus einer einzigen Eizelle entstehen kann. Auch die Vielfalt an Körperformen, ob Mensch, Maus, oder Elefant, beginnt jeweils mit einer Zelle. Wie ist es möglich, dass sich so komplizierte, verschiedenartige Strukturen aus so einheitlichen Vorläufern entwickeln? Diese Frage stellen sich Wissenschaftler schon seit langem. Die Antworten werden helfen, die Entwicklung eines Organismus zu verstehen und könnten langfristig auch als Grundlagen für neue Therapieansätze bei Entwicklungsstörungen dienen.

Der Ursprung der Struktur

Wie kommt also Struktur in einen Zellhaufen? Es überrascht nicht allzu sehr, dass es selbst in einem sehr frühen Stadium der Entwicklung jemanden gibt, der das Sagen hat. So entstehen aus einzelnen Zellen Kontroll- und Schaltzentren. Diese beeinflussen, wie sich andere Zellen weiterentwickeln und an welchen Bestimmungsort sie wandern. Ein wichtiges Kontrollzentrum in der frühen Entwicklungsphase ist eine Zellschicht, die man den Hypoblast oder das Vordere Viszerale Endoderm, AVE, nennt. Die Zellen dieser Region beeinflussen andere Zellen des Embryos und bewirken so die Bildung einer Längsachse, also den Unterschied zwischen vorne und hinten. Dass AVE-Zellen noch eine ganz andere Funktion haben, konnten Wissenschaftler der Max-Planck-Institute für Neurobiologie und Biochemie, des Helmholtz Zentrums München und der Ludwig-Maximilians Universität jetzt aufdecken.

Stützschicht mit großer Wirkung

Angrenzend an die AVE-Zellen befindet sich eine eiweißhaltige Stützschicht, die Basalmembran. Diese sorgt für Stabilität, lenkt aber auch wie eine Art Leitschiene Zellbewegungen und beeinflusst die Differenzierung von Zellen. Die Wissenschaftler fanden nun heraus, dass die Basalmembran ihre wichtigen Funktionen im Kopfbereich des Embryos nur dann erfüllen kann, wenn die benachbarten AVE-Zellen ein bestimmtes Protein, "FLRT3" genannt, auf ihrer Zelloberfläche tragen. Fehlte FLRT3, brach die Basalmembran auseinander. Zur Überraschung der Wissenschaftler verloren darauf die von der Basalmembran beeinflussten Zellen ihre Orientierung und entwickelten sich zu einem ganz anderen Zelltyp weiter, dem Mesoderm. Zwar ist die Bildung von Mesoderm ein natürlicher Prozess während der Entwicklung des Embryos. Normalerweise wird Mesoderm jedoch nur am hinteren Ende des Embryos gebildet.

Fehlentwicklungen am Kopf

"Dieses zusätzliche Verhindern der Mesoderm-Entwicklung durch die Basalmembran war völlig unerwartet", berichtet Rüdiger Klein, der Leiter der Studie. Bisher nahm man an, dass die AVE-Zellen durch die Ausschüttung von bestimmten Botenstoffen die Ausbildung des Mesoderms unterdrückten. Wie wichtig jedoch die Basalmembran, und damit die Funktion des FLRT3-Proteins ist zeigt sich, wenn dieser zweite Kontrollmechanismus nicht mehr funktioniert: Der Kopfbereich kann sich nicht mehr richtig entwickeln.

FLRT3 ist das erste zellgebundene Protein, das mit einer regulierenden Funktion der AVE-Zellen in Verbindung gebracht werden konnte. Diese Erkenntnis bietet einen ganz neuen Ansatzpunkt zum Verständnis grundlegender Vorgänge in der Embryonalentwicklung. "Diese neue Funktion der Basalmembran ist äußerst interessant, da Basalmembranen unter anderem später bei der Metastasenbildung bestimmter Krebsarten eine wichtige Rolle spielen", so Klein.

Originalveröffentlichung:
Joaquim Ega, Christian Erlacher, Eloi Montanez, Ingo Burtscher, Satoru Yamagishi, Martin Heß, Falko Hampel, Rodrigo Sanchez, Maria Teresa Rodrigues-Manzaneque, Michael R. Bösel, Reinhard Fässler, Heiko Lickert, Rüdiger Klein
Genetic ablation of FLRT3 reveals a novel morphogenetic function fort the anterior visceral endoderm in suppressing mesoderm differentiation

Genes & Development,1. Dezember 2008

Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 89950-022
Email: merker@neuro.mpg.de
Prof. Dr. Rüdiger Klein
Max-Planck-Institut für Neurobiologie, Martinsried
Email: rklein@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics