Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller im Team: Göttinger Wissenschaftler entdecken, warum Neuronen Meister der Datenverarbeitung sind

15.03.2011
Gruppen von Neuronen in der Großhirnrinde können deutlich schnellere Signale verarbeiten und weiterleiten als lange vermutet.

Für diesen erstaunlichen experimentellen Fund haben Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), vom Bernstein Center for Computational Neuroscience Göttingen und von der Universität Göttingen jetzt erstmals eine Erklärung gefunden.


Neuronen in der Großhirnrinde empfangen tausende, synaptische Signale von anderen Zellen. Dieses so genannte „synaptische Bombardement“ führt dazu, dass der elektrische Strom in die Zelle stark fluktuiert. Grafik: MPIDS, Hintergrund: Thomas Dresbach/University Göttingen

Ihre theoretischen Berechnungen zeigen, dass allein die Geschwindigkeit, mit der ein einzelnes Neuron ein Signal abfeuert, die Kommunikationsgeschwindigkeit einer Gruppe begrenzt. Neuronenverbunde können somit mit einigen hundert Einzelreizen pro Sekunde umgehen. Von ihren Ergebnissen berichten die Göttinger Wissenschaftler in der Fachzeitschrift Physical Review Letters.

(Physical Review Letters, 106, 088102 (2011))

Jedes Neuron in der Großhirnrinde steht unter „Dauerbeschuss“: Es empfängt ständig elektrische Pulse, so genannte Spikes, von etwa 10000 anderen Nervenzellen, leitet selbst aber nur etwa zehnmal pro Sekunde einen eigenen Puls weiter. Nach getaner Arbeit benötigt jedes Neuron danach eine kurze Erholungszeit: Treffen in direkter Folge nach einem eigenen Spike weitere Pulse die Zelle, ist sie noch nicht wieder aufnahmebereit und kann die neue Information nicht verarbeiten. Das Neuron verstummt.

Bisher gingen Wissenschaftler deshalb davon aus, dass die Großhirnrinde nur Signale mit Frequenzen von bis maximal 20 Hertz bewältigen kann. Doch jüngste Experimente haben gezeigt, dass Gruppen von Neuronen deutlich schneller reagieren können als gedacht. Sie kommen mit Signalen von bis zu 200 Hertz zurecht. Eine Erklärung für dieses Verhalten gab es bisher nicht.

„Damit ein theoretisches Modell dieses Verhalten erklären kann, muss es die Dynamik der elektrischen Ströme in der Zellmembran genau berücksichtigen“, erklärt Prof. Dr. Fred Wolf vom MPIDS den Ansatz seiner neuen Studie. Trifft ein Spike an einer Nervenzelle ein, baut sich eine elektrische Spannung an der Zellwand auf. Wegen der Vielzahl der ankommenden Pulse fluktuiert diese Spannung permanent. Doch erst wenn sie einen bestimmten Wert überschreitet, entscheidet sich das Neuron, ebenfalls einen Puls abzufeuern. Dieser Prozess des Abfeuerns dauert nur wenige Bruchteile einer Millisekunde.

Den Göttinger Wissenschaftlern ist es nun erstmals gelungen, diesen komplizierten Ablauf in ein Modell so einzubeziehen, dass zu einem eingehenden Signal die Antwort einer Neuronengruppe direkt berechnet werden konnte. „Leitet die Gruppe kein Ausgangssignal mehr weiter, ist dies ein Zeichen, dass das Eingangssignal zu schnell war und die Neuronen überfordert hat“, erklärt Dr. Wei Wei vom MPIDS den Grundgedanken des Modells. Die Rechnungen der Forscher zeigen, dass keinesfalls die Dauer der Erholungsphase die Geschwindigkeit der neuronalen Kommunikation begrenzt. Denn während sich ein Neuron erholt, kann ein anderes einspringen. Eine obere Grenze für die Verarbeitungsgeschwindigkeit hängt stattdessen nur von der deutlich kürzeren Zeit ab, die das Neuron zum Aufbau eines Pulses benötigt. Teams von Neuronen können somit problemlos hochfrequente Signale von einigen hundert Hertz empfangen und weiterleiten.

Die neuen Ergebnisse könnten unter anderem von großer Bedeutung für die Entwicklungsneurobiologie sein. Schon lange wissen Forscher, dass bei Säuglingen und Jungtieren visuelle Erfahrungen erst ab einem bestimmten Alter neue Verknüpfungen der Nervenzellen in der Großhirnrinde auslösen. „Die allerersten Reize hingegen verändern die Architektur des Neuronennetzes kaum“, erklärt Prof. Dr. Siegrid Löwel, Neurobiologin an der Universität Göttingen. Mithilfe der neuen Ergebnisse ließe sich dieses Phänomen nun im Prinzip erklären. Denn das Knüpfen neuer Verbindungen funktioniert nur dann zuverlässig, wenn die Neuronen möglichst schnell und präzise auf eingehende Sinnesinformationen reagieren können. Sollte sich im Experiment herausstellen, dass die Neuronen von Jungtieren nicht so schnelle Signale verarbeiten können wie die ausgewachsener Tiere, würde dies diese Erklärung bestätigen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten