Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller im Team: Göttinger Wissenschaftler entdecken, warum Neuronen Meister der Datenverarbeitung sind

15.03.2011
Gruppen von Neuronen in der Großhirnrinde können deutlich schnellere Signale verarbeiten und weiterleiten als lange vermutet.

Für diesen erstaunlichen experimentellen Fund haben Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), vom Bernstein Center for Computational Neuroscience Göttingen und von der Universität Göttingen jetzt erstmals eine Erklärung gefunden.


Neuronen in der Großhirnrinde empfangen tausende, synaptische Signale von anderen Zellen. Dieses so genannte „synaptische Bombardement“ führt dazu, dass der elektrische Strom in die Zelle stark fluktuiert. Grafik: MPIDS, Hintergrund: Thomas Dresbach/University Göttingen

Ihre theoretischen Berechnungen zeigen, dass allein die Geschwindigkeit, mit der ein einzelnes Neuron ein Signal abfeuert, die Kommunikationsgeschwindigkeit einer Gruppe begrenzt. Neuronenverbunde können somit mit einigen hundert Einzelreizen pro Sekunde umgehen. Von ihren Ergebnissen berichten die Göttinger Wissenschaftler in der Fachzeitschrift Physical Review Letters.

(Physical Review Letters, 106, 088102 (2011))

Jedes Neuron in der Großhirnrinde steht unter „Dauerbeschuss“: Es empfängt ständig elektrische Pulse, so genannte Spikes, von etwa 10000 anderen Nervenzellen, leitet selbst aber nur etwa zehnmal pro Sekunde einen eigenen Puls weiter. Nach getaner Arbeit benötigt jedes Neuron danach eine kurze Erholungszeit: Treffen in direkter Folge nach einem eigenen Spike weitere Pulse die Zelle, ist sie noch nicht wieder aufnahmebereit und kann die neue Information nicht verarbeiten. Das Neuron verstummt.

Bisher gingen Wissenschaftler deshalb davon aus, dass die Großhirnrinde nur Signale mit Frequenzen von bis maximal 20 Hertz bewältigen kann. Doch jüngste Experimente haben gezeigt, dass Gruppen von Neuronen deutlich schneller reagieren können als gedacht. Sie kommen mit Signalen von bis zu 200 Hertz zurecht. Eine Erklärung für dieses Verhalten gab es bisher nicht.

„Damit ein theoretisches Modell dieses Verhalten erklären kann, muss es die Dynamik der elektrischen Ströme in der Zellmembran genau berücksichtigen“, erklärt Prof. Dr. Fred Wolf vom MPIDS den Ansatz seiner neuen Studie. Trifft ein Spike an einer Nervenzelle ein, baut sich eine elektrische Spannung an der Zellwand auf. Wegen der Vielzahl der ankommenden Pulse fluktuiert diese Spannung permanent. Doch erst wenn sie einen bestimmten Wert überschreitet, entscheidet sich das Neuron, ebenfalls einen Puls abzufeuern. Dieser Prozess des Abfeuerns dauert nur wenige Bruchteile einer Millisekunde.

Den Göttinger Wissenschaftlern ist es nun erstmals gelungen, diesen komplizierten Ablauf in ein Modell so einzubeziehen, dass zu einem eingehenden Signal die Antwort einer Neuronengruppe direkt berechnet werden konnte. „Leitet die Gruppe kein Ausgangssignal mehr weiter, ist dies ein Zeichen, dass das Eingangssignal zu schnell war und die Neuronen überfordert hat“, erklärt Dr. Wei Wei vom MPIDS den Grundgedanken des Modells. Die Rechnungen der Forscher zeigen, dass keinesfalls die Dauer der Erholungsphase die Geschwindigkeit der neuronalen Kommunikation begrenzt. Denn während sich ein Neuron erholt, kann ein anderes einspringen. Eine obere Grenze für die Verarbeitungsgeschwindigkeit hängt stattdessen nur von der deutlich kürzeren Zeit ab, die das Neuron zum Aufbau eines Pulses benötigt. Teams von Neuronen können somit problemlos hochfrequente Signale von einigen hundert Hertz empfangen und weiterleiten.

Die neuen Ergebnisse könnten unter anderem von großer Bedeutung für die Entwicklungsneurobiologie sein. Schon lange wissen Forscher, dass bei Säuglingen und Jungtieren visuelle Erfahrungen erst ab einem bestimmten Alter neue Verknüpfungen der Nervenzellen in der Großhirnrinde auslösen. „Die allerersten Reize hingegen verändern die Architektur des Neuronennetzes kaum“, erklärt Prof. Dr. Siegrid Löwel, Neurobiologin an der Universität Göttingen. Mithilfe der neuen Ergebnisse ließe sich dieses Phänomen nun im Prinzip erklären. Denn das Knüpfen neuer Verbindungen funktioniert nur dann zuverlässig, wenn die Neuronen möglichst schnell und präzise auf eingehende Sinnesinformationen reagieren können. Sollte sich im Experiment herausstellen, dass die Neuronen von Jungtieren nicht so schnelle Signale verarbeiten können wie die ausgewachsener Tiere, würde dies diese Erklärung bestätigen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise