Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller im Team: Göttinger Wissenschaftler entdecken, warum Neuronen Meister der Datenverarbeitung sind

15.03.2011
Gruppen von Neuronen in der Großhirnrinde können deutlich schnellere Signale verarbeiten und weiterleiten als lange vermutet.

Für diesen erstaunlichen experimentellen Fund haben Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), vom Bernstein Center for Computational Neuroscience Göttingen und von der Universität Göttingen jetzt erstmals eine Erklärung gefunden.


Neuronen in der Großhirnrinde empfangen tausende, synaptische Signale von anderen Zellen. Dieses so genannte „synaptische Bombardement“ führt dazu, dass der elektrische Strom in die Zelle stark fluktuiert. Grafik: MPIDS, Hintergrund: Thomas Dresbach/University Göttingen

Ihre theoretischen Berechnungen zeigen, dass allein die Geschwindigkeit, mit der ein einzelnes Neuron ein Signal abfeuert, die Kommunikationsgeschwindigkeit einer Gruppe begrenzt. Neuronenverbunde können somit mit einigen hundert Einzelreizen pro Sekunde umgehen. Von ihren Ergebnissen berichten die Göttinger Wissenschaftler in der Fachzeitschrift Physical Review Letters.

(Physical Review Letters, 106, 088102 (2011))

Jedes Neuron in der Großhirnrinde steht unter „Dauerbeschuss“: Es empfängt ständig elektrische Pulse, so genannte Spikes, von etwa 10000 anderen Nervenzellen, leitet selbst aber nur etwa zehnmal pro Sekunde einen eigenen Puls weiter. Nach getaner Arbeit benötigt jedes Neuron danach eine kurze Erholungszeit: Treffen in direkter Folge nach einem eigenen Spike weitere Pulse die Zelle, ist sie noch nicht wieder aufnahmebereit und kann die neue Information nicht verarbeiten. Das Neuron verstummt.

Bisher gingen Wissenschaftler deshalb davon aus, dass die Großhirnrinde nur Signale mit Frequenzen von bis maximal 20 Hertz bewältigen kann. Doch jüngste Experimente haben gezeigt, dass Gruppen von Neuronen deutlich schneller reagieren können als gedacht. Sie kommen mit Signalen von bis zu 200 Hertz zurecht. Eine Erklärung für dieses Verhalten gab es bisher nicht.

„Damit ein theoretisches Modell dieses Verhalten erklären kann, muss es die Dynamik der elektrischen Ströme in der Zellmembran genau berücksichtigen“, erklärt Prof. Dr. Fred Wolf vom MPIDS den Ansatz seiner neuen Studie. Trifft ein Spike an einer Nervenzelle ein, baut sich eine elektrische Spannung an der Zellwand auf. Wegen der Vielzahl der ankommenden Pulse fluktuiert diese Spannung permanent. Doch erst wenn sie einen bestimmten Wert überschreitet, entscheidet sich das Neuron, ebenfalls einen Puls abzufeuern. Dieser Prozess des Abfeuerns dauert nur wenige Bruchteile einer Millisekunde.

Den Göttinger Wissenschaftlern ist es nun erstmals gelungen, diesen komplizierten Ablauf in ein Modell so einzubeziehen, dass zu einem eingehenden Signal die Antwort einer Neuronengruppe direkt berechnet werden konnte. „Leitet die Gruppe kein Ausgangssignal mehr weiter, ist dies ein Zeichen, dass das Eingangssignal zu schnell war und die Neuronen überfordert hat“, erklärt Dr. Wei Wei vom MPIDS den Grundgedanken des Modells. Die Rechnungen der Forscher zeigen, dass keinesfalls die Dauer der Erholungsphase die Geschwindigkeit der neuronalen Kommunikation begrenzt. Denn während sich ein Neuron erholt, kann ein anderes einspringen. Eine obere Grenze für die Verarbeitungsgeschwindigkeit hängt stattdessen nur von der deutlich kürzeren Zeit ab, die das Neuron zum Aufbau eines Pulses benötigt. Teams von Neuronen können somit problemlos hochfrequente Signale von einigen hundert Hertz empfangen und weiterleiten.

Die neuen Ergebnisse könnten unter anderem von großer Bedeutung für die Entwicklungsneurobiologie sein. Schon lange wissen Forscher, dass bei Säuglingen und Jungtieren visuelle Erfahrungen erst ab einem bestimmten Alter neue Verknüpfungen der Nervenzellen in der Großhirnrinde auslösen. „Die allerersten Reize hingegen verändern die Architektur des Neuronennetzes kaum“, erklärt Prof. Dr. Siegrid Löwel, Neurobiologin an der Universität Göttingen. Mithilfe der neuen Ergebnisse ließe sich dieses Phänomen nun im Prinzip erklären. Denn das Knüpfen neuer Verbindungen funktioniert nur dann zuverlässig, wenn die Neuronen möglichst schnell und präzise auf eingehende Sinnesinformationen reagieren können. Sollte sich im Experiment herausstellen, dass die Neuronen von Jungtieren nicht so schnelle Signale verarbeiten können wie die ausgewachsener Tiere, würde dies diese Erklärung bestätigen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein neuer Index zur Diagnose einer nichtalkoholischen Fettlebererkrankung

20.01.2017 | Biowissenschaften Chemie

Das Cockpit für Kühlgeräte

20.01.2017 | Energie und Elektrotechnik

Der Hausschwamm als Chemiker

20.01.2017 | Biowissenschaften Chemie