Schnelle Kleinhirn-Netzwerke kompensieren Unzulänglichkeiten der Sinnessysteme

Spitzensportler führen Bewegungen mit einer zeitlichen Präzision von einer Tausendstelsekunde aus. Wie das Gehirn solche präzisen Bewegungen steuert, ist weithin ein Rätsel. Denn im Vergleich mit herkömmlichen Rechnern ist das Gehirn viel langsamer.

In einer aktuellen Studie zeigen PD Dr. Fahad Sultan (Hertie-Institut für klinische Hirnforschung am Universitätsklinikum Tübingen) und Kollegen, dass Gehirn-Netzwerke, die Bewegungen steuern, tatsächlich zu zeitlich ungewöhnlich präziser Informationsverarbeitung fähig sind (Nature Communications).

Mittels funktioneller Magnetresonanztomografie (fMRT) und intrakortikaler elektrischer Stimulation konnten die Forscher beobachten, wie das Gehirn auf künstliche Reize reagiert.

In einer Zusammenarbeit zwischen dem Hertie-Institut für klinische Hirnforschung und dem Max-Planck-Institut für biologische Kybernetik im Rahmen des Werner-Reichardt-Centrums für Integrative Neurowissenschaften (CIN), zeigten die Wissenschaftler im Versuch mit Rhesusaffen, dass die Stimulation des Kleinhirns zu Antworten in weitreichenden Gehirnregionen mit einer Genauigkeit im Bereich von tausendstel Sekunden führt.

Die Studie konnte auch erstmalig Nervenzellantworten in Gehirnregionen nachweisen, die eigentlich für die sensorische Informationsverarbeitung zuständig sind, speziell für den Tast-, Gleichgewichts-, Seh- oder den Gehörsinn. Die Ergebnisse der Studie zeigen den Weg, den das Gehirn nutzt, um ein entscheidendes Problem der Bewegungskontrolle – die verspätete sensorische Rückmeldung – zu lösen: Bei der Bewegung etwa eines Armes wird über unsere Sinnessysteme der aktuelle Zustand des Armes an das Gehirn rückgemeldet.

Die zeitlichen Verzögerungen durch die Nervenbahnen zum Gehirn ergeben aber eine kritische Verzögerung und die Informationen erreichen das Gehirn zu spät, um das Bewegungsprogramm zu beeinflussen. Das Kleinhirn überbrückt diese Lücke durch die Erzeugung einer Vorhersage über die erwarteten sensorischen Auswirkungen der Bewegung für die Bewegungskontrolle und für die Wahrnehmung der Bewegung.

Die Ergebnisse der Studie sind von erheblicher Relevanz für das Verständnis der Folgen von Kleinhirnerkrankungen, für die Bewegungskontrolle und die Bewegungswahrnehmungen, Folgen, deren Rehabilitation auf der Grundlage der bislang allein verfügbaren rein empirischen Verfahren unbefriedigend bleibt. Sie haben darüber hinaus Bedeutung für die Robotik, die sich mit ähnlichen Problemen der Bewegungskontrolle auseinandersetzt.

Originaltitel der Publikation: Cerebellar pathways project to motor and sensory parietal networks with high temporal precision.

Veröffentlicht am 26.06.2012 in Nature Communications. DOI: 10.1038/ncomms1912.
Autoren: Fahad Sultan, Mark Augath, Salah Hamodeh, Yusuke Murayama, Axel Oeltermann, Alexander Rauch, Peter Thier.

Kontakte

Dr. Fahad Sultan
Hertie-Institut für klinische Hirnforschung (HIH),
Universitätsklinikum Tübingen,
Zentrum für Neurologie
Telefon: 07071-2980464
E-Mail: fahad.sultan@uni-tuebingen.de
Hertie-Institut für klinische Hirnforschung
Externe Pressestelle :
Kirstin Ahrens
Telefon: 07073-500 724, Mobil: 0173-300 53 96
E-Mail: mail@kirstin-ahrens.de
Universitätsklinikum Tübingen
Presse- und Öffentlichkeitsarbeit
Dr. Ellen Katz
Telefon: 07071-29 80 112
E-Mail: Ellen.Katz@med.uni-tuebingen.de

Media Contact

Kirstin Ahrens idw

Weitere Informationen:

http://www.uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer