Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüsselmechanismus zur Vermehrung von Epstein-Barr-Viren gefunden

12.01.2010
Wissenschaftler des Helmholtz Zentrums München haben einen entscheidenden Mechanismus im Vermehrungszyklus des Epstein-Barr-Virus aufgeklärt.

Unter Federführung von Prof. Wolfgang Hammerschmidt gelang es, die Funktion eines Proteins zu identifizieren, das für die Vermehrung des Virus eine wesentliche Rolle spielt. Epstein-Barr-Viren können Krebs auslösen. Die in der aktuellen Ausgabe des renommierten Fachmagazins PNAS veröffentlichten Ergebnisse sind damit ein wesentlicher Schritt zum Verständnis des Wachstums von Tumoren.

Das Epstein-Barr-Virus (EBV), ein Vertreter der Herpes-Viren, hat zwei verschiedene Lebensphasen: Nach der Infektion einer Zelle begibt es sich zunächst in den Ruhezustand. Unter bestimmten Umständen kann das Virus aktiv werden - und löst dann das Wachstum von Tumoren aus oder vermehrt sich in der Zelle. Besonders bei immungeschwächten Patienten kann EBV seine Wirtszellen dazu bringen, sich unkontrolliert zu teilen - ein Tumor entsteht.

Die Ursachen für den Übergang des EBV aus dem Ruhe- in den Aktivzustand waren bisher ungeklärt - insbesondere, welche Faktoren verantwortlich sind und wie die molekularen Mechanismen funktionieren. Die Wissenschaftler des Helmholtz Zentrums München haben nun herausgefunden, wie das Virus den Ruhezustand beendet und den Vermehrungszyklus aktiviert.

Prof. Wolfgang Hammerschmidt, Leiter der Abteilung Genvektoren am Helmholtz Zentrum München, erklärt: "Wir haben nun die entscheidende Funktion des viralen BZLF1 Proteins identifiziert: Es aktiviert die Gene des EBV, die für die Vermehrung der Viruspartikel essenziell sind." Etwa 70 verschiedene Gene sind während der Ruhephase abgeschaltet, weil bestimmte DNA-Abschnitte chemisch modifiziert sind: Einige DNA-Bausteine tragen sogenannte Methylgruppen. Sie sind für den Zellapparat eine Art Stoppsignal, so dass diese Gene nicht in Protein umgewandelt werden können.

"BZLF1 kann diese Methylierungs-Muster auf der DNA aufspüren", berichtet Markus Kalla, der Erst-Autor der Studie. Mit seiner DNA-Bindedomäne binde das Protein gerade an die methylierte DNA-Sequenz. Eine zweite Domäne von BZLF1 sorge dann dafür, dass das Gen wieder aktiviert wird. "Ein derartiger Mechanismus war bisher nicht bekannt", sagt Hammerschmidt. Bisher sind die Forscher davon ausgegangen, dass die Methylgruppen von den DNA-Bausteinen entfernt werden müssen, ehe die sogenannten Transkriptionsfaktoren an die regulatorische DNA-Sequenz binden und so das Gen aktivieren können.

Den Ergebnissen der Forscher zufolge umgeht BZLF1 offenbar diese Hürde. Demnach scheint BZLF1 zum einen notwendig zu sein, um die Latenzphase aufrecht zu erhalten, aber auch, um diese zu beenden.

Bei der Virusvermehrung werden üblicherweise innerhalb der Zelle eine große Zahl neuer Partikel gebildet. Dabei nutzen Viren große Teile des Zellapparates, insbesondere bestimmte Proteine und Faktoren. Nach der Vermehrung werden die neuen Viren freigesetzt - Forscher sprechen vom lytischen Zyklus. Der Nachteil: dabei machen die Viren das Immunsystem auf sich aufmerksam, welches dann gegen den Erreger vorgeht.

Das Epstein-Barr-Virus nutzt aber eine andere Strategie: Anstatt alle Energie auf die sofortige Vermehrung in der Zelle zu setzen, geht es nach der Infektion in den Ruhezustand über und verhindert dadurch eine Reaktion des Immunsystems. Das Virus infiziert Zellen des Immunsystems, die sogenannten B-Zellen und schleust dabei zunächst sein Erbgut in deren Kern ein. Während die meisten Viren sofort ihren lytischen Vermehrungszyklus starten und dafür den Zellaparat zur Verdopplung des Erbguts sowie zur Herstellung wichtiger Strukturproteine aus den Genen nutzen, begnügt sich EBV damit, lediglich ein paar Gene von der Zelle in Proteine verwandeln zu lassen. Diese sogenannten latenten Gene sind für die Ruhephase wichtig, sie sorgen dafür, dass das EBV-Erbgut stabil im Zellkern verbleibt, während sich die Zelle selbst vermehrt. Diese scheinbar friedliche Koexistenz endet, wenn das Virus in die Vermehrungsphase übergeht oder Tumorwachstum auslöst.

Mit den in PNAS nun publizierten Ergebnissen haben Hammerschmidt und seine Kollegen einen wichtigen Baustein gefunden, um die Rolle von EBV beim Tumorwachstum besser zu verstehen.

Weitere Informationen

Ansprechpartner für Medien:
Sven Winkler
Leiter Abteilung Kommunikation
Telefon: 089/3187-3946
E-Mail: presse@helmholtz-muenchen.de
Originalpublikation:
Kalla, M, Schmeinck, A, Bergbauer, M, Pich, D, Hammerschmidt, W: AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. PNAS - Online Publikation (DOI 10.1073/pnas.0911948107)

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten