Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüsselmechanismus zur Vermehrung von Epstein-Barr-Viren gefunden

12.01.2010
Wissenschaftler des Helmholtz Zentrums München haben einen entscheidenden Mechanismus im Vermehrungszyklus des Epstein-Barr-Virus aufgeklärt.

Unter Federführung von Prof. Wolfgang Hammerschmidt gelang es, die Funktion eines Proteins zu identifizieren, das für die Vermehrung des Virus eine wesentliche Rolle spielt. Epstein-Barr-Viren können Krebs auslösen. Die in der aktuellen Ausgabe des renommierten Fachmagazins PNAS veröffentlichten Ergebnisse sind damit ein wesentlicher Schritt zum Verständnis des Wachstums von Tumoren.

Das Epstein-Barr-Virus (EBV), ein Vertreter der Herpes-Viren, hat zwei verschiedene Lebensphasen: Nach der Infektion einer Zelle begibt es sich zunächst in den Ruhezustand. Unter bestimmten Umständen kann das Virus aktiv werden - und löst dann das Wachstum von Tumoren aus oder vermehrt sich in der Zelle. Besonders bei immungeschwächten Patienten kann EBV seine Wirtszellen dazu bringen, sich unkontrolliert zu teilen - ein Tumor entsteht.

Die Ursachen für den Übergang des EBV aus dem Ruhe- in den Aktivzustand waren bisher ungeklärt - insbesondere, welche Faktoren verantwortlich sind und wie die molekularen Mechanismen funktionieren. Die Wissenschaftler des Helmholtz Zentrums München haben nun herausgefunden, wie das Virus den Ruhezustand beendet und den Vermehrungszyklus aktiviert.

Prof. Wolfgang Hammerschmidt, Leiter der Abteilung Genvektoren am Helmholtz Zentrum München, erklärt: "Wir haben nun die entscheidende Funktion des viralen BZLF1 Proteins identifiziert: Es aktiviert die Gene des EBV, die für die Vermehrung der Viruspartikel essenziell sind." Etwa 70 verschiedene Gene sind während der Ruhephase abgeschaltet, weil bestimmte DNA-Abschnitte chemisch modifiziert sind: Einige DNA-Bausteine tragen sogenannte Methylgruppen. Sie sind für den Zellapparat eine Art Stoppsignal, so dass diese Gene nicht in Protein umgewandelt werden können.

"BZLF1 kann diese Methylierungs-Muster auf der DNA aufspüren", berichtet Markus Kalla, der Erst-Autor der Studie. Mit seiner DNA-Bindedomäne binde das Protein gerade an die methylierte DNA-Sequenz. Eine zweite Domäne von BZLF1 sorge dann dafür, dass das Gen wieder aktiviert wird. "Ein derartiger Mechanismus war bisher nicht bekannt", sagt Hammerschmidt. Bisher sind die Forscher davon ausgegangen, dass die Methylgruppen von den DNA-Bausteinen entfernt werden müssen, ehe die sogenannten Transkriptionsfaktoren an die regulatorische DNA-Sequenz binden und so das Gen aktivieren können.

Den Ergebnissen der Forscher zufolge umgeht BZLF1 offenbar diese Hürde. Demnach scheint BZLF1 zum einen notwendig zu sein, um die Latenzphase aufrecht zu erhalten, aber auch, um diese zu beenden.

Bei der Virusvermehrung werden üblicherweise innerhalb der Zelle eine große Zahl neuer Partikel gebildet. Dabei nutzen Viren große Teile des Zellapparates, insbesondere bestimmte Proteine und Faktoren. Nach der Vermehrung werden die neuen Viren freigesetzt - Forscher sprechen vom lytischen Zyklus. Der Nachteil: dabei machen die Viren das Immunsystem auf sich aufmerksam, welches dann gegen den Erreger vorgeht.

Das Epstein-Barr-Virus nutzt aber eine andere Strategie: Anstatt alle Energie auf die sofortige Vermehrung in der Zelle zu setzen, geht es nach der Infektion in den Ruhezustand über und verhindert dadurch eine Reaktion des Immunsystems. Das Virus infiziert Zellen des Immunsystems, die sogenannten B-Zellen und schleust dabei zunächst sein Erbgut in deren Kern ein. Während die meisten Viren sofort ihren lytischen Vermehrungszyklus starten und dafür den Zellaparat zur Verdopplung des Erbguts sowie zur Herstellung wichtiger Strukturproteine aus den Genen nutzen, begnügt sich EBV damit, lediglich ein paar Gene von der Zelle in Proteine verwandeln zu lassen. Diese sogenannten latenten Gene sind für die Ruhephase wichtig, sie sorgen dafür, dass das EBV-Erbgut stabil im Zellkern verbleibt, während sich die Zelle selbst vermehrt. Diese scheinbar friedliche Koexistenz endet, wenn das Virus in die Vermehrungsphase übergeht oder Tumorwachstum auslöst.

Mit den in PNAS nun publizierten Ergebnissen haben Hammerschmidt und seine Kollegen einen wichtigen Baustein gefunden, um die Rolle von EBV beim Tumorwachstum besser zu verstehen.

Weitere Informationen

Ansprechpartner für Medien:
Sven Winkler
Leiter Abteilung Kommunikation
Telefon: 089/3187-3946
E-Mail: presse@helmholtz-muenchen.de
Originalpublikation:
Kalla, M, Schmeinck, A, Bergbauer, M, Pich, D, Hammerschmidt, W: AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. PNAS - Online Publikation (DOI 10.1073/pnas.0911948107)

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten