Schleimpilz-Adernetzwerke geben Hinweise für die Krebstherapie

Ein Schleimpilz-Netzwerk. Das Skelett des Netzwerkes ist in Schwarz und Rot eingezeichnet.<br>&quot; Hans-Günther Döbereiner&quot;<br>

Schleimpilze gibt es überall in der Natur. Diese auf den ersten Blick primitiv wirkenden Einzeller verfügen über eine hochentwickelte Strategie, um Nahrung und Umweltinformationen zu transportieren. Dabei nutzen sie ein verzweigtes Adernetzwerk.

Wie sich solch ein Netzwerk bildet, haben Wissenschaftler der Universitäten Bremen und des Mechanobiology Institute Singapore in einem jetzt veröffentlichten Beitrag für die renommierte Fachzeitschrift „Physical Review Letters“ genau beschrieben. Am Schleimpilz Physarum polycephalum haben sie untersucht, wie sich einzelne getrennte Segmente des Schleimpilzkörpers zu einem großen zusammenhängenden Adernetzwerk zusammenfügen, siehe Figur 1. Diesen Prozess nennt man Perkolation.

Professor Hans-Günther Döbereiner und sein Team aus dem Fachbereich Physik / Elektrotechnik der Uni Bremen sind überzeugt, dass ihre Forschungsergebnisse auch in der Krebstherapie Anwendung finden können. Der jetzt entschlüsselte Mechanismus der Netzwerkbildung des Schleimpilzes zum Transport seiner Zellflüssigkeit durch nahezu den gesamten Organismus ist auf die Blutversorgung von Tumoren übertragbar. Durch das Verständnis dieses Prozesses dürften Krebstherapien, die das Wachstum von Tumoren durch Einschränkung der Blutversorgung verhindern, an Effektivität gewinnen.

Um zu ihren Forschungsergebnissen zu kommen, haben die Forscher aus Bremen und Singapur exakte mathematische Werkzeuge aus dem Bereich der Topologie verwendet. Dieser Teil der Mathematik beschäftigt sich mit den Zusammenhangseigenschaften geometrischer Körper bzw. allgemeiner mathematischer Strukturen. Es kommt nicht auf die Form sondern nur auf die verschiedenen möglichen Wege in einem Körper an. Diese lassen sich einfach durch ein Skelett, das aus Verbindungspfaden und Kreuzungen besteht, repräsentieren.

„Unsere Erkenntnisse sind nicht nur für die Grundlagenforschung in der biologischen Physik und Systembiologie interessant, sondern allgemein für die Zell- und Entwicklungsbiologie. Eine medizinische Anwendung bei Stammzell- und Krebstherapien ist möglich“, zeigt sich der Bremer Biophysiker Döbereiner überzeugt.

Literaturhinweis: Adrian Fessel, Christina Oettmeier, Erik Bernitt, Nils C. Gauthier and Hans-Günther Döbereiner, Physarum polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks, Phys. Rev. Lett. 109, 078103 (2012).

Weitere Informationen:

Universität Bremen
Fachbereich Physik / Elektrotechnik
Institut für Biophysik
Prof. Dr. Hans-Günther Döbereiner
E-Mail: hgd@biophysik.uni-bremen.de (im August nur per Mail erreichbar)

Media Contact

Eberhard Scholz idw

Weitere Informationen:

http://www.uni-bremen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer