Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Schlafentzug im Hirn auswirkt

12.11.2013
Schlafentzug wird bereits heute als Antidepressivum eingesetzt. Doch welche neurobiologischen Mechanismen dabei wirken, ist noch nicht ausreichend bekannt.

Forschende der Psychiatrischen Universitätsklinik Zürich zeigen nun mit einer neuen Bildgebungsstudie, dass sich bei Schlafentzug depressionsrelevante Hirnnetzwerke neu strukturieren. Die Einsicht in diese funktionellen Veränderungen im Hirn könnte für gewisse Patienten therapeutisch genutzt werden.

Zur Behandlung von Depressionen existieren diverse wirksame Verfahren. Doch bis anhin sind keine biologischen oder andere Marker bekannt, die den Behandlungserfolg spezifisch und auf den jeweiligen Patienten bezogen vorhersagen können. Der kontrollierte Schlafentzug wird seit Jahrzehnten zur Behandlung von Depressionen eingesetzt. Etwa 40 bis 60 Prozent der Patientinnen und Patienten erfahren dadurch eine bedeutsame Symptomverbesserung, die allerdings nicht mehr als zwei Tage anhält. Die Erforschung der neurobiologischen Mechanismen von Schlafentzug ist deshalb so interessant, weil damit schnell wirkende Therapien erforscht werden können. Mit einer neuen Bildgebungsstudie weisen jetzt Forschende der Klinik für Psychiatrie, Psychotherapie und Psychosomatik der Psychiatrischen Universitätsklinik Zürich bei gesunden Probandinnen nach, dass sich ihre depressionsrelevanten Hirnnetzwerke nach Schlafentzug neu strukturiert haben.

Der Dorsal Nexus als möglicher Biomarker von Depressionen

Von früheren Studien ist bekannt, dass Stoffwechselveränderungen in zwei Hirnregionen mit Depressionssymptomen einhergehen: einerseits einer Überaktivität in dem für die Verarbeitung von emotionalen Prozessen zuständigen Anterioren Cingulum, andererseits einer Unteraktivität in dem vor allem an kognitiven Leistungen beteiligten Dorsolateralen Präfrontalkortex. Zudem konnte kürzlich mithilfe funktioneller Magnetresonanztomographie gezeigt werden, dass bei depressiven Patienten eine übersteigerte Verknüpfung diverser Hirnnetzwerke über einen bestimmten Knotenpunkt, den sogenannten Dorsal Nexus, vorliegt.

Diese Überaktivität wurde als Grundlage der bei Depressionen auftretenden emotionalen, kognitiven und vegetativen Fehlregulationen interpretiert. Darauf basierend wurde eine Veränderung der Netzwerkverknüpfungen über den Dorsal Nexus als möglicher Biomarker für antidepressive Therapien vorgeschlagen. Dieser Mechanismus bestätigte sich in einer früheren Studie der UZH-Forschenden: Sie verabreichten gesunden Probanden das kurzwirksame Antidepressivum Ketamin und stellten eine verminderte Verknüpfung über den Dorsal Nexus fest.

Umstrukturierung der Netzwerke: Affekt raus, Kognition rein

Für ihre jetzt vorliegende Bildgebungsstudie massen die Forschenden Verknüpfungsveränderungen des Dorsal Nexus und des Ruhenetzwerks. Sie kombinierten dabei die funktionelle Magnetresonanztomographie mit Hirnstromableitungen (Elektroenzephalogramm, EEG) und untersuchten eine Gruppe gesunder Probandinnen mit und ohne Schlafentzug.

«Es zeigte sich, dass Schlafentzug zu einer Verringerung der Verknüpfungen zwischen dem Ruhenetzwerk und dem Anterioren Cingulum führte», erklärt Prof. Erich Seifritz, Direktor der Klinik für Psychiatrie, Psychotherapie und Psychosomatik der Psychiatrischen Universitätsklinik Zürich. Zudem kam es zu einer verstärkten Verknüpfung zwischen dem Dorsal Nexus und dem Dorsolateralen Präfrontalkortex. Auf der Netzwerkebene bedeutet dies einen Ausschluss von Arealen, die vor allem für emotionale Prozesse zuständig sind, bei gleichzeitiger Rekrutierung von Arealen, die kognitive Kontrollvorgänge vermitteln.

«Dies ist ein spezifischer Biomechanismus des Schlafentzugs, der gerade bei jenen Patienten therapeutisch wirken könnte, die – wie in älteren Untersuchungen gezeigt wurde – eine Überaktivität des Anterioren Cingulum und eine Unteraktivität des Dorsolateralen Präfrontalkortex aufweisen», so Erich Seifritz. Und er schliess: «Dieser Befund ist ein weiterer Schritt in der Zuordnung biologisch definierter Therapiemechanismen zu ebenfalls biologisch definierten Pathomechanismen in der Depressionsforschung.»

Literatur:

Oliver G. Bosch, Julia S. Rihm, Milan Scheidegger, Hans-Peter Landolt, Philipp Stämpfli, Janis Brakowski, Fabrizio Esposito, Björn Rasch, and Erich Seifritz. Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans. Proceedings of the National Academy of Sciences of the United States of America. November 11, 2013. Doi: 10.1073/pnas.1317010110

Kontakt:

Prof. Erich Seifritz
Psychiatrische Universitätsklinik Zürich
Tel. +41 44 384 23 12 und +41 79 411 14 92
E-Mail: erich.seifritz@bli.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.mediadesk.uzh.ch/articles/2013/schlafentzug.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie

Kleinste Teilchen aus fernen Galaxien!

22.09.2017 | Physik Astronomie

Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen

22.09.2017 | Bildung Wissenschaft