Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scharfe Live-Bilder aus dem Mäusehirn

03.02.2012
Feinste Strukturen des Gehirns aufzudecken, um seine Funktionsweise zu enträtseln – diesem Ziel sind Forscher um Stefan Hell vom Max-Planck-Institut für biophysikalische Chemie einen entscheidenden Schritt näher gekommen.

Mit der von Hell entwickelten STED-Mikroskopie ist es ihnen erstmals gelungen, scharfe Live-Bilder aus dem Gehirn einer lebenden Maus aufzunehmen. In einer bisher unerreichten Auflösung von unter 70 Nanometern haben sie die winzigen Strukturen sichtbar gemacht, über die Nervenzellen miteinander kommunizieren. Diese Anwendung der STED-Mikroskopie eröffnet Neurobiologen und Medizinern neue Wege, grundlegende Vorgänge im Gehirn zu entschlüsseln. (Science, 3. Februar 2012)


Diese STED-Aufnahme einer Nervenzelle aus der oberen Hirnschicht einer lebenden Maus zeigt in bisher ungekannter Detailtreue die sehr feinen Verästelungen von Nervenzellen, an denen Synapsen sitzen. Im kleinen Bild sieht man das pilzförmige Ende einer solchen Verästelung, an dem die Nervenzelle Informationen von anderen Nervenzellen empfängt. Bild: Max-Planck-Institut für biophysikalische Chemie

Unmengen an Informationen werden tagtäglich nicht nur über unsere Datenautobahnen verschickt. Auch unser Gehirn muss eine riesige Datenflut verarbeiten. Dazu steht jede der rund hundert Milliarden Nervenzellen mit tausenden Nachbarzellen in Kontakt. Der gesamte Datenaustausch erfolgt dabei über Kontaktstellen – die Synapsen. Nur wenn Nervenzellen zur richtigen Zeit und am richtigen Ort über solche Kontaktstellen miteinander kommunizieren, kann das Gehirn seine komplexen Aufgaben bewältigen: Wir spielen ein schwieriges Klavierstück, lernen jonglieren oder erinnern uns an Namen von Menschen, die wir jahrelang nicht gesehen haben.

Am meisten lässt sich über diese wichtigen Schaltstellen im Gehirn lernen, wenn man sie direkt bei ihrer Arbeit beobachtet. Wann und wo bilden sich neue Synapsen und warum verschwinden sie an anderer Stelle? Keine leichten Fragen, denn Details in lebenden Nervenzellen können nur mit Lichtmikroskopen beobachtet werden. Feinheiten, die enger beieinander liegen als 200 Nanometer (millionstel Millimeter), erscheinen aufgrund der Lichtbeugung als ein einziger verwaschener Fleck. Die von Stefan Hell und seinem Team am Max-Planck-Institut für biophysikalische Chemie entwickelte STED-Mikroskopie hat diese Grenze erstmals radikal unterlaufen. Dazu verwenden die Forscher einen einfachen Trick: Eng benachbarte Details werden unter Verwendung eines speziellen Lichtstrahls sequenziell dunkel gehalten, sodass sie nicht auf einmal, sondern nacheinander aufleuchten und somit unterschieden werden können. Mit dieser Technik konnten die Wissenschaftler um Hell die Auflösung gegenüber herkömmlichen Lichtmikroskopen bis um etwa das Zehnfache steigern.

Die STED-Mikroskopie hat von der Materialforschung bis hin zur Zellbiologie bereits breite Anwendung gefunden. Zellkulturen und Schnittpräparate boten unter diesem Mikroskop faszinierende Einblicke in den zellulären Nanokosmos. Erste Echtzeit-Videoclips von einer Nervenzelle zeigten, wie winzige Botenstoffbehälter innerhalb der langen Nervenzell-Endigungen wandern.

Vision wird Wirklichkeit

Als kühne Vision galt noch vor einem Jahr, was den Physikern und Biologen um Hell nun gelungen ist: auch höhere lebende Organismen mit Detailschärfe im Nanometerbereich zu untersuchen. Als erste blickten die Göttinger Forscher mit dem STED-Mikroskop direkt in das Gehirn lebender Mäuse. Ihre Arbeiten zeigen Nervenzellen aus der oberen Hirnschicht der Nager in bisher unerreichter Detailtreue.

„Mit unserem STED-Mikroskop sehen wir selbst die sehr feinen Verästelungen von Nervenzellen im Gehirn einer lebenden Maus scharf, an denen die Synapsen sitzen. Bei der hohen Auflösung von 70 Nanometern können wir diese sogenannten Dornfortsätze mit ihren pilz- oder knopfförmigen Ausstülpungen deutlich erkennen“, erklärt Hell. Es sind die bislang schärfsten Aufnahmen dieser elementaren Kontaktstellen des Gehirnschaltkreises. „Um diese sichtbar zu machen, nehmen wir genetisch veränderte Mäuse, die in ihren Nervenzellen große Mengen eines gelb fluoreszierenden Proteins herstellen. Dieses Protein wandert in alle Verästelungen der Nervenzelle, selbst in kleinste, feinste Strukturen“, erklärt Katrin Willig, Nachwuchsforscherin in der Abteilung NanoBiophotonik von Stefan Hell. Die genetisch veränderten Mäuse stammen aus einer Zucht der Arbeitsgruppe von Frank Kirchhoff am Göttinger Max-Planck-Institut für Experimentelle Medizin. Bilder der Nervenzellen im Abstand von sieben bis acht Minuten offenbarten den Wissenschaftlern Überraschendes: Die Dornfortsätze können sich bewegen und ändern ihre Form. „Die superscharfen Live-Aufnahmen könnten in Zukunft sogar zeigen, wie bestimmte Proteine an den Kontaktstellen verteilt sind“, so Hell. Mit solchen immer detaillierteren Bildern von Strukturen im Gehirn will das Team um Hell dazu beitragen, den Aufbau und die Funktion der Synapsen auf molekularer Ebene aufzuklären.

Solche Erkenntnisse könnten auch helfen, Krankheiten besser zu verstehen, die auf einer Fehlfunktion von Synapsen beruhen. Zu diesen sogenannten Synaptopathien zählen beispielsweise Autismus oder Epilepsie. „Durch die STED-Technik und ihre Anwendung im lebenden Organismus bekommen wir nun zum ersten Mal einen optischen Zugang zur molekularen Skala solcher Krankheiten“, hofft Hell. Als einer der beiden Sprecher des Göttinger DFG-Forschungszentrums Molekularphysiologie des Gehirns setzt er bei seiner weiteren Forschung auf Zusammenarbeit. Mit Neurobiologen und Neurologen möchte er mit seinem Team die Fortschritte in der Abbildungstechnik in grundlegende Erkenntnisse über die Arbeitsweise unseres Gehirns umsetzen.

Über Stefan Hell
Stefan W. Hell promovierte 1990 an der Universität Heidelberg in Physik und arbeitete von 1991 bis 1993 am Europäischen Molekularbiologischen Laboratorium (EMBL) in Heidelberg. Danach folgte ein dreineinhalbjähriger Aufenthalt an den Universitäten Turku (Finnland) und Oxford (Großbritannien). Als Leiter einer Max-Planck-Nachwuchsgruppe wechselte er im Jahr 1997 an das Göttinger Max-Planck-Institut für biophysikalische Chemie. Seit 2002 ist er dort Direktor und Leiter der Abteilung NanoBiophotonik. Am Deutschen Krebsforschungszentrum im Heidelberg leitet Hell seit 2008 die Abteilung Optische Nanoskopie. Stefan Hell hat für seine Forschung zahlreiche Preise und Auszeichnungen erhalten, darunter den 10. Deutschen Zukunftspreis des Bundespräsidenten (2006), den Gottfried-Wilhelm-Leibniz-Preis sowie den Niedersächsischen Staatspreis (beide 2008). Der Otto-Hahn-Preis für Physik folgte im Jahr 2009. Im Jahr 2011 erhielt er mit dem Familie-Hansen-Preis, dem Körber-Preis für die Europäische Wissenschaft, dem Göteborger Lise-Meitner-Preis und dem Meyenburg-Preis vier weitere renommierte Auszeichnungen. Hell ist seit 2009 Ehrendoktor der Universität Turku (Finnland).
Original-Publikation:
Sebastian Berning, Katrin I. Willig, Heinz Steffens, Payam Dibaj, Stefan W. Hell: Nanoscopy in a living mouse brain. Science, 3. Februar 2012.
Kontakt:
Prof. Dr. Dr. h.c. Stefan W. Hell
Abteilung NanoBiophotonik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel: +49 551 / 201-2500, -2503
E-Mail: shell@gwdg.de
Dr. Carmen Rotte
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel: +49 551 / 201-1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/research/dep/hell
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_06
http://www.mpibpc.mpg.de/groups/pr/PR/2008/08_03

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung