Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Salmonellen-Infekt auf der Spur

13.11.2012
Freiburger Biochemiker analysieren erstmals einen Kanal, der den Krankheitserreger resistent gegen Zellgifte macht

Der Krankheitserreger Salmonella typhimurium, bekannt als Salmonellen-Infekt, ist resistent gegen viele Zellgifte, die das menschliche Immunsystem produziert, um sich gegen Eindringlinge zu verteidigen.

Wissenschaftlerinnen und Wissenschaftler der Universität Freiburg ist es gelungen, den Kanal, der den Erreger resistent macht, zu untersuchen. Ihre Ergebnisse haben sie in der aktuellen Ausgabe des Fachmagazins Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

Stickstoff erfüllt in lebenden Organismen verschiedene Aufgaben: Er kann als Energiequelle für das Wachstum, als Signalstoff oder sogar als Zellgift wirken. Denn die Zellen des menschlichen Immunsystems verteidigen sich gegen Bakterien, indem sie die Stickstoffverbindungen Nitrit und Peroxynitrit erzeugen und dadurch Eindringlinge schädigen oder töten. Bakterien jedoch können Nitrit zu ihrer Vermehrung nutzen. Sie haben ihr System an die Verteidigung des Immunsystems angepasst, um das Zellgift aufzunehmen, zur eigenen Stickstoffquelle umzuwandeln und dadurch unschädlich zu machen.

Salmonella typhimurium gelingt dies durch seinen Nitritkanal NirC. Salmonellen-Bakterien, die NirC nicht besitzen, können keine menschlichen Zellen infizieren. Ein Forschungsteam um Prof. Dr. Oliver Einsle und Prof. Dr. Susana Andrade vom Institut für Biochemie der Albert-Ludwigs-Universität und dem Freiburger Exzellenzcluster BIOSS Centre for Biological Signalling Studies hat die molekulare Wirkungsweise dieses Nitritkanals untersucht.

NirC ist ein in der Zellmembran integriertes und dadurch besonders schwer zugängliches Protein. Die Freiburger Wissenschaftler haben es isoliert und seine dreidimensionale Raumstruktur aufgeklärt. Zudem konnten sie das Protein in eine nachgebaute biologische Mikromembran einbauen und so den elektrischen Strom messen, der durch den Transport von negativ geladenen Nitritionen durch NirC entsteht. Dadurch analysierte das Team alle Eigenschaften und Funktionen des Kanals und erstellte ein dreidimensionales Strukturmodell. Dieses Modell ist Anknüpfungspunkt für weitere Studien, um zum Beispiel nach spezifischen Hemmstoffen des Kanals zu suchen. Im klinischen Einsatz können sie letztlich dazu dienen, die Gefährlichkeit des Krankheitserregers zu senken.

Kontakt:
Prof. Dr. Oliver Einsle
Institut für Organische Chemie und Biochemie
Universität Freiburg
Tel.: 0761/203-6058
E-Mail: einsle@biochemie-uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/pm/2012/pm.2012-11-13.313-en?set_language=en

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie die Zelle verhindert, dass falsch ausgelieferte Proteine im Zellkern Schaden anrichten
18.12.2014 | Ruprecht-Karls-Universität Heidelberg

nachricht Biodiversität: Empfehlungen zur Bewertung eingeschleppter Arten
18.12.2014 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

nANO meets water VI - Nanotechnik für die Wasserpraxis

17.12.2014 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Februar 2015

16.12.2014 | Veranstaltungen

Sechste internationale Konferenz "Semantic Web in Libraries" erfolgreich abgeschlossen

15.12.2014 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auslöser für Reparatur nach Rückenmarksverletzungen entdeckt

19.12.2014 | Medizin Gesundheit

Das Rätsel der Platonischen Katalysatoren ist gelüftet

18.12.2014 | Materialwissenschaften

Nanosensoren für Herz und Hirn

18.12.2014 | Medizintechnik