Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Säure in den Wein kommt

05.02.2010
Ohne die Protonen-Pumpen der Pflanzen gäbe es im Wein keine Säure. Wichtig sind diese Pumpen generell für die Vitalität von Pflanzen, wie Forscher aus Würzburg und Heidelberg in der renommierten Zeitschrift "Proceedings" der Akademie der Wissenschaften der USA berichten.

Bei der Photosynthese produzieren Pflanzen in der Regel mehr Nährstoffe als sie selber brauchen. Den Überschuss lagern sie ein - unter anderem in ihren Vakuolen. Diese Vorratskammern machen in den Zellen 70 bis 90 Prozent des Volumens aus. Sie sind mit einer wässrigen Lösung von Ionen und Nährstoffen gefüllt und von einer Membran umgeben.

Zuckerrüben häufen in ihren Vakuolen Zucker an, Weintrauben und andere Früchte speichern dort zusätzlich zum Zucker auch Fruchtsäuren. Mit welchen Inhaltsstoffen die Vakuolen gefüllt werden, hängt von der Ausstattung ihrer Membranen mit speziellen Transportern ab. Denn einfach so gelangen Zucker und Säuren nicht in die Vorratskammern hinein - die Pflanze verfrachtet sie gezielt dorthin, und das gelingt ihr nur mit der Hilfe von Protonen-Pumpen.

Säuregrad von Wein ist durch Protonen bestimmt

Unter Aufwendung von Energie schaffen diese Pumpen Protonen in die Vakuole hinein. "Der Säuregrad von Wein zum Beispiel geht allein auf die im Vakuolensaft angehäuften Protonen zurück", sagt Professor Rainer Hedrich, Biophysiker an der Universität Würzburg. Rund 90 Prozent des Traubensafts stammen aus den Vakuolen.

Die Aktivität der Pumpen sorgt dafür, dass die Vakuole viel mehr Protonen enthält als der Zellsaft. In diesem Konzentrationsgefälle steckt Energie - die Protonen drängen mit aller Macht wieder hinaus aus der überfüllten Vakuole, ähnlich wie Luft aus einem prall aufgeblasenen Ballon. Hier kommen nun die speziellen Transporter ins Spiel, die in der Vakuolenmembran sitzen: Sie nutzen den energetisch begünstigten Ausstrom von Protonen, um nach dem Austauschprinzip gleichzeitig Zucker und andere Moleküle in die Vakuole zu schaffen.

"Dieses schrittweise Umsetzen von Energie ist ein allgemeines Prinzip in der Biologie. Speicherorgane wie Zuckerrüben und Früchte, aber auch Blätter können damit Inhaltsstoffe um das Hundertfache und darüber hinaus anreichern", so Hedrich. Die Pflanzen schaffen sich auf diese Weise wertvolle Ressourcen für Zeiten, in denen Mangel herrscht - zum Beispiel nachts, wenn die Photosynthese zum Erliegen kommt.

Wie wichtig Protonen-Pumpen für die Vitalität und die Produktivität von Pflanzen sind, beschreiben Rainer Hedrich und Professorin Karin Schumacher von der Universität Heidelberg gemeinsam in der Zeitschrift "Proceedings". Die beiden Wissenschaftler kooperieren in einer überregionalen Vakuolen-Forschergruppe, die von der Deutschen Forschungsgemeinschaft (DFG) finanziell gefördert wird.

Zwei verschiedene Protonen-Pumpen füllen die Vakuole

Zwei Typen von Protonen-Pumpen gibt es in der Vakuolenmembran. Der eine Typ braucht die energiereiche Phosphatverbindung ATP als Brennstoff für seine Aktivität, der andere verwendet dafür das so genannte Pyrophosphat (PP).

Die Aktivität beider Pumpen hat Rainer Hedrich erstmals gemessen - 1986 als Postdoktorand am Max-Planck-Institut für Biophysikalische Chemie in Göttingen. Wie die zwei Pumpentypen miteinander in Verbindung stehen und welche relative Bedeutung ihnen zukommt, war bislang weitgehend unklar.

Um diese Fragen zu klären, haben Hedrich und Schumacher jetzt an der genetischen Modellpflanze Arabidopsis (Ackerschmalwand) die Gene für die ATP-abhängige Protonen-Pumpe ausgeschaltet. So war in den Pflanzen nur noch der andere Pumpentyp aktiv.

Ohne Pumpen: Stress senkt die Produktivität

"Unter optimalen Wachstumsbedingungen wirkte sich das Fehlen der ATP-abhängigen Pumpe zunächst nicht auf das Gedeihen der Pflanzen aus", erklärt Hedrich. Wurden die Pflanzen aber bestimmten Stressbedingungen ausgesetzt, wie Stickstoffmangel und Schwermetallbelastung, blieben sie in Wachstum und Produktivität deutlich zurück.

Erst unter den erschwerten Lebensbedingungen machte sich das Fehlen der Pumpen bemerkbar. Mit nur einem Typ der Protonen-Pumpen kann die Pflanze ihre Vakuolen offenbar nicht mehr so gut mit Ionen und Stoffwechselprodukten füllen, dass sie gut genug gegen Stress gewappnet wäre.

Angespornt durch diese Entdeckung wollen Rainer Hedrich und Karin Schumacher als nächstes versuchen, Pflanzen zu erzeugen, die vermehrt bestimmte Protonen-Pumpen herstellen und dadurch Stressperioden besser überstehen.

Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Melanie Krebs, Diana Beyhl, Esther Görlich, Khaled A. S. Al-Rasheid, Irene Marten, York-Dieter Stierhof, Rainer Hedrich, and Karin Schumacher; Proc Nat Acad Sci (USA), published online before print January 26, 2010; doi:10.1073/pnas.0913035107

Zur Person von Rainer Hedrich

Professor Rainer Hedrich gehört mit seinen Arbeiten über Ionenkanäle und -pumpen seit über 20 Jahren zu den weltweit bedeutendsten Wissenschaftlern auf dem Gebiet des Membrantransports. Die Faculty of 1000 stuft seine Arbeiten regelmäßig als besonders lesenswert ein. Das ISI Web of Knowledge rechnet ihn in der Sektion Animal and Plant Sciences zu den besonders häufig zitierten Forschern. Erst im Januar 2010 hat der Europäische Forschungsrat ihm einen der begehrten ERC Advanced Grants verliehen: Diese Auszeichnung ist mit 2,5 Millionen Euro dotiert.

Mit der Analyse von Ionenkanälen und -pumpen mit hoch empfindlichen biophysikalischen Verfahren ist Rainer Hedrich bestens vertraut. Im Labor des Nobelpreisträgers Professor Erwin Neher gelang ihm 1984 noch während seiner Doktorarbeit erstmals der funktionelle Nachweis pflanzlicher Ionenkanäle. Seit dieser Entdeckung mit Hilfe der Patch-Clamp-Technik hat er viele unterschiedliche Ionenkanaltypen und -pumpen sowohl in der pflanzlichen Zellmembran als auch in den Membranen verschiedener Zellorganellen identifiziert und charakterisiert. Sein Fachwissen über die molekulare und biophysikalische Analyse von Transportvorgängen macht ihn zum gesuchten Kooperationspartner in Sonderforschungsbereichen, Graduiertenkollegs und nationalen sowie internationalen Forschungsverbünden.

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Molekulare Pflanzenphysiologie und Biophysik) der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie