Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher verfolgen Metallkomplexe auf dem Weg in lebende Zellen

21.04.2010
"Good vibrations" helfen bei der Untersuchung neuer Wirkstoffe
"VIP"-Veröffentlichung in "Angewandte Chemie"

Bochumer Chemikern ist es mit der Methode der Raman-Mikroskopie gelungen, den Aufenthaltsort von Metallverbindungen in lebenden Zellen genau zu verfolgen.

Die Forscher gewinnen so neue Einblicke in die Wirkmechanismen von metallhaltigen Arzneistoffen, denen sie großes Potenzial z.B. bei der Bekämpfung von Krebserkrankungen beimessen. Wegen ihrer grundsätzlichen Bedeutung wurde die Veröffentlichung in der aktuellen Ausgabe der Fachzeitschrift "Angewandte Chemie" als besonders wichtige Arbeit ("VIP") herausgestellt.

Metallhaltige Wirkstoffe

Die beiden Arbeitsgruppen von Dr. Ulrich Schatzschneider und Prof. Dr. Nils Metzler-Nolte synthetisieren Metallverbindungen, die gegen Krebs und Infektionskrankheiten wirken können. "Weit über die Hälfte aller chemischen Elemente sind Metalle. Umso erstaunlicher ist es, dass metallhaltige Wirkstoffe im Portfolio der gängigen Arzneistoffe, von sehr wenigen Ausnahmen abgesehen, bisher praktisch nicht vorkommen", sagt Prof. Metzler-Nolte. Dabei sind sie in Zellmodellen gegen Krebs genauso aktiv wie die besten organischen Verbindungen. Anders als in der traditionellen Wirkstoffforschung, in der ein Wirkstoff gezielt gegen ein vorher genau bekanntes Zielmolekül in der Zelle synthetisiert wird, ist über die Wirkmechanismen solcher Metallverbindungen fast nichts bekannt. "Einer der Gründe dafür mag die Tatsache sein, dass gerade wegen der besonderen Eigenschaften von Metallkomplexen auch völlig neuartige Wirkmechanismen möglich sind", mutmaßen die Forscher. Umso wichtiger ist es, diese Mechanismen aufzuklären, um neue Wirkstoff mit verbesserten Eigenschaften herstellen zu können.

Hilfe durch die Raman-Mikroskopie

Mit Hilfe der Raman-Mikroskopie sind die Bochumer Forscher diesem Ziel jetzt näher gekommen. Dabei werden in einem Mikroskop die Moleküle durch das stark gebündelte Licht eines Lasers polarisiert. Man kann dadurch den charakteristischen Fingerabdruck eines Moleküls, das sich im Fokus des Lasers befindet, aufzeichnen. Die gemessenen Frequenzen sind genauso wie ein Fingerabdruck charakteristisch für das jeweilige Molekül. In einer Zelle sind aber aufgrund der Vielzahl der Substanzen in der Zelle auch sehr viele Fingerabdrücke überlagert, was oft die Identifizierung erschwert. Die Forscher machten sich daher die Tatsache zunutze, dass die untersuchte Metallverbindung charakteristische Schwingungen in einem von den übrigen Molekülen nicht belegten Frequenzbereich zeigt - vergleichbar einer einzelnen Geigenstimme in einem Posaunenchor. Die Analyse des Fingerabdrucks innerhalb der Zelle erfolgte in der Arbeitsgruppe von Prof. Dr. Martina Havenith, die neuartige physikalische Untersuchungsmethoden im Bereich der Spektroskopie entwickelt. Ihre Mitarbeiter konnten die Aufnahme der Metallverbindung verfolgen und feststellen, dass sie nach einigen Stunden im Zellkern angereichert wird. Anders als bei den meisten üblicherweise eingesetzten Methoden brauchten die Forscher die Zellen für ihre Untersuchungen nicht zu zerstören und auch keine zusätzlichen Markierungen in Form von Markermolekülen einzusetzen. Die Lokalisierung der Verbindung im Zellkern gibt wiederum den Synthesechemikern wertvolle Hinweise auf den Wirkmechanismus und mögliche Verbesserungen der Verbindung.

Titelbild bei Angewandte

Die grundlegende Bedeutung der Veröffentlichung dieser Ergebnisse wurde durch die Gutachter der Zeitschrift "Angewandte Chemie" besonders gewürdigt: Nur wenn alle anonymen, von der Redaktion ausgewählten Gutachter unisono zu einer sehr guten Bewertung eines Manuskripts gelangen, wird dieses als "very important paper" (VIP) bezeichnet. Die Arbeit wurde auch für das Titelbild der aktuellen Ausgabe ausgewählt.

Research Departments: interdisziplinäre Forschung an der Ruhr-Universität

Die Arbeiten der Bochumer Forscher werden ermöglicht durch das Research Department Interfacial Systems Chemistry. Research Departments sind Verbünde von Forschern der Ruhr-Universität, die in einem der Schwerpunktbereiche der Forschung besonders intensiv zusammenarbeiten. Die bisher fünf Research Departments werden vom Land Nordrhein-Westfalen und der Stiftung Mercator gefördert. Im Research Department Interfacial Systems Chemistry werden komplexe Vorgänge an Oberflächen und Grenzflächen untersucht. Das Ramanmikroskop wurde im Rahmen des Verbundprojektes "Innovative Instrumentierung zur Erweiterung der ANKA-Nutzung" vom Bundesforschungsministerium BMBF (BMBF 05KS7PC2) angeschafft.

Titelaufnahme

Konrad Meister, Johanna Niesel, Ulrich Schatzschneider, Nils Metzler-Nolte, Diedrich A. Schmidt und Martina Havenith: Labelfreie Visualisierung von Metallcarbonylkomplexen in lebenden Zellen mittels Raman-Mikrospektroskopie/ Label-Free Imaging of Metal-Carbonyl Complexes in Live Cells by Raman Microspectroscopy. In: Angewandte Chemie 2010, International Edition, Volume 49 Issue 19, Pages 3310-3312, doi: 10.1002/ange.201000097

Angewandte Chemie, deutschsprachige Ausgabe, Volume 122 Issue 19, Pages 3382-3384, doi: 10.1002/ange.201000097

Weitere Informationen

Dr. Ulrich Schatzschneider, Prof. Dr. Nils Metzler-Nolte, Lehrstuhl für Anorganische Chemie I - Bioanorganische Chemie und Research Department Interfacial Systems Chemistry der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24153, E-Mail: ulrich.schatzschneider@rub.de, nils.metzler-nolte@rub.de, Internet: http://www.rub.de/ac1

Prof. Dr. Havenith, Lehrstuhl für Physikalische Chemie II und Research Department Interfacial Systems Chemistry der Ruhr-Universität, 44780 Bochum, E-Mail: martina.havenith@rub.de, Internet: http://www.rub.de/pc2

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de/rd/rd-ifsc
http://www.rub.de/ac1
http://www.rub.de/pc2

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie