Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Chemiker entwickeln neues Herstellungsverfahren für MOFs

04.05.2009
Großer Stauraum im molekularen Regal
Neue Funktionsmaterialien durch intelligente Oberflächen

Ob Wasserstoff für Brennstoffzellen oder Medikamente - in molekularen Regalsystemen ("MOFs" für engl. Metal-Organic Frameworks) lässt sich allerhand unterbringen.

Auch Metallpartikel für die Katalyse - wenn da nicht ein Haken wäre: Macht man die Fächer des Regals zu groß, entsteht darin bei der Herstellung automatisch ein zweites Regalsystem. Durch diesen "Wildwuchs" wird die Größe der Fächer deutlich verringert. Bochumer Chemiker um Prof. Dr. Christof Wöll und Prof. Dr. Roland A. Fischer haben dieses gravierende Problem jetzt durch die Entwicklung einer alternativen Herstellungstechnik gelöst.

Sie lassen nicht das ganze Molekularregal auf einmal entstehen, sondern bauen es Schicht für Schicht auf einer intelligenten organischen Oberfläche auf. So lassen sich auch Fächer bauen, die groß genug für die Metallpartikel sind. Die Forscher berichten in der aktuellen Ausgabe von NATURE Materials.

Fächer sind für Metalle zu klein

Die hochporösen MOFs bestehen meistens aus zwei verschiedenen Typen von Bausteinen. Dabei stecken molekulare, aus organischen Molekülen gebildete Streben in anorganischen Kreuzstücken, die Metallatome enthalten. Nach dem Mischen und Erhitzen entstehen dann durch Selbstorganisation die MOFs. Das weltweit große Interesse an diesen molekularen Regalsystemen rührt daher, dass sie mit unterschiedlichsten Objekten beladen werden können.

"Das Spektrum reicht dabei von der Speicherung flüssigen Wasserstoffs in Pkw-Tanks bis hin zu Medikamentendepots", erklärt Prof. Wöll. Auch für die Katalyse sind solche "löchrigen" Materialien interessant. Dazu werden Metallpartikel in die Poren eingelagert, was allerdings eine gewisse Größe der Hohlräume erfordert. "In diesem Zusammenhang standen wir bisher vor einem fundamentalen Problem bei der Synthese der MOFs", so Prof. Fischer. "Werden die Poren zu groß, wachsen gleichzeitig mehrere Regalsysteme auf einmal, und es entsteht ein ineinander verschachteltes Geflecht mehrerer Strukturen." Dadurch reduziert sich entsprechend die Größe der einzelnen Regalfächer.

Schicht für Schicht größere Fächer aufbauen

Dieses als Interpenetration (Durchdringung) bezeichnete Problem konnten die Forscher der Lehrstühle für Physikalische Chemie (Wöll) und Anorganische Chemie (Fischer) der Ruhr-Universität jetzt umgehen. Statt dem bisher üblichen Syntheseverfahren -Mischen der Substanzen und anschließendes Erhitzen - entwickelten sie ein neuartiges Verfahren, das als Flüssigphasenepitaxie bezeichnet wird. Dabei werden mit intelligenten Oberflächen beschichtete Substrate abwechselnd in Behälter getaucht, die jeweils nur eine Sorte der Regalbausteine enthalten. Die organischen Oberflächen sorgen dafür, dass nur ein einziges Regalsystem mit entsprechend großen Fächern entsteht, und Duplikate und damit das Durchdringen verhindert werden. "Damit steht der Weg zur Herstellung von Materialien mit deutlich größeren Poren als bisher offen", freut sich Wöll. Zurzeit versuchen die Forscher, in die geräumigen Hohlräume Metallcluster einzulagern, die dann wiederum für die Katalyse und die Sensorik genutzt werden können.

Intelligente Oberflächen

Die intelligenten Oberflächen, die dafür sorgen, dass genau die gewünschten Regalverbindungen entstehen, lassen die Chemiker auf einfache Weise von selbst wachsen: Sie tauchen Metallsubstrate in Lösungen so genannter Organothiole ein, schwefelhaltiger organischer Moleküle. Die Schwefelatome werden mit einer chemischen Reaktion fest an das metallische Substrat gebunden und dienen so als Anker für die organischen Moleküle. Es entsteht ein molekularer Pelz, der als SAM (für engl.: self-assembled monolayer) bezeichnet wird. Auf der Oberfläche dieser SAMs können dann die Regalverbindungen kontrolliert aufwachsen - sogar deren Orientierung lässt sich durch die maßgeschneiderten SAMs vorgeben.

Titelaufnahme

Osama Shekhah, Hui Wang, Markos Paradinas, Carmen Ocal, Björn Schüpbach, Andreas Terfort, Denise Zacher, Roland A. Fischer, and Christof Wöll: Controlling Interpenetration in Metal-Organic Frameworks by Liquid Phase Epitaxy. In: Nature Materials, 3.5.2009, DOI: 10.1038/NMAT2445

Weitere Informationen

Prof. Dr. Christof Wöll, Lehrstuhl für Physikalische Chemie I der Ruhr-Universität Bochum, 44780 Bochum, Tel: 0234/32-25529, Fax: 0234/32-14182, E-Mail: woell@pc.ruhr-uni-bochum.de, Lehrstuhl-Homepage: http://www.pc.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen