Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Chemiker entwickeln neues Herstellungsverfahren für MOFs

04.05.2009
Großer Stauraum im molekularen Regal
Neue Funktionsmaterialien durch intelligente Oberflächen

Ob Wasserstoff für Brennstoffzellen oder Medikamente - in molekularen Regalsystemen ("MOFs" für engl. Metal-Organic Frameworks) lässt sich allerhand unterbringen.

Auch Metallpartikel für die Katalyse - wenn da nicht ein Haken wäre: Macht man die Fächer des Regals zu groß, entsteht darin bei der Herstellung automatisch ein zweites Regalsystem. Durch diesen "Wildwuchs" wird die Größe der Fächer deutlich verringert. Bochumer Chemiker um Prof. Dr. Christof Wöll und Prof. Dr. Roland A. Fischer haben dieses gravierende Problem jetzt durch die Entwicklung einer alternativen Herstellungstechnik gelöst.

Sie lassen nicht das ganze Molekularregal auf einmal entstehen, sondern bauen es Schicht für Schicht auf einer intelligenten organischen Oberfläche auf. So lassen sich auch Fächer bauen, die groß genug für die Metallpartikel sind. Die Forscher berichten in der aktuellen Ausgabe von NATURE Materials.

Fächer sind für Metalle zu klein

Die hochporösen MOFs bestehen meistens aus zwei verschiedenen Typen von Bausteinen. Dabei stecken molekulare, aus organischen Molekülen gebildete Streben in anorganischen Kreuzstücken, die Metallatome enthalten. Nach dem Mischen und Erhitzen entstehen dann durch Selbstorganisation die MOFs. Das weltweit große Interesse an diesen molekularen Regalsystemen rührt daher, dass sie mit unterschiedlichsten Objekten beladen werden können.

"Das Spektrum reicht dabei von der Speicherung flüssigen Wasserstoffs in Pkw-Tanks bis hin zu Medikamentendepots", erklärt Prof. Wöll. Auch für die Katalyse sind solche "löchrigen" Materialien interessant. Dazu werden Metallpartikel in die Poren eingelagert, was allerdings eine gewisse Größe der Hohlräume erfordert. "In diesem Zusammenhang standen wir bisher vor einem fundamentalen Problem bei der Synthese der MOFs", so Prof. Fischer. "Werden die Poren zu groß, wachsen gleichzeitig mehrere Regalsysteme auf einmal, und es entsteht ein ineinander verschachteltes Geflecht mehrerer Strukturen." Dadurch reduziert sich entsprechend die Größe der einzelnen Regalfächer.

Schicht für Schicht größere Fächer aufbauen

Dieses als Interpenetration (Durchdringung) bezeichnete Problem konnten die Forscher der Lehrstühle für Physikalische Chemie (Wöll) und Anorganische Chemie (Fischer) der Ruhr-Universität jetzt umgehen. Statt dem bisher üblichen Syntheseverfahren -Mischen der Substanzen und anschließendes Erhitzen - entwickelten sie ein neuartiges Verfahren, das als Flüssigphasenepitaxie bezeichnet wird. Dabei werden mit intelligenten Oberflächen beschichtete Substrate abwechselnd in Behälter getaucht, die jeweils nur eine Sorte der Regalbausteine enthalten. Die organischen Oberflächen sorgen dafür, dass nur ein einziges Regalsystem mit entsprechend großen Fächern entsteht, und Duplikate und damit das Durchdringen verhindert werden. "Damit steht der Weg zur Herstellung von Materialien mit deutlich größeren Poren als bisher offen", freut sich Wöll. Zurzeit versuchen die Forscher, in die geräumigen Hohlräume Metallcluster einzulagern, die dann wiederum für die Katalyse und die Sensorik genutzt werden können.

Intelligente Oberflächen

Die intelligenten Oberflächen, die dafür sorgen, dass genau die gewünschten Regalverbindungen entstehen, lassen die Chemiker auf einfache Weise von selbst wachsen: Sie tauchen Metallsubstrate in Lösungen so genannter Organothiole ein, schwefelhaltiger organischer Moleküle. Die Schwefelatome werden mit einer chemischen Reaktion fest an das metallische Substrat gebunden und dienen so als Anker für die organischen Moleküle. Es entsteht ein molekularer Pelz, der als SAM (für engl.: self-assembled monolayer) bezeichnet wird. Auf der Oberfläche dieser SAMs können dann die Regalverbindungen kontrolliert aufwachsen - sogar deren Orientierung lässt sich durch die maßgeschneiderten SAMs vorgeben.

Titelaufnahme

Osama Shekhah, Hui Wang, Markos Paradinas, Carmen Ocal, Björn Schüpbach, Andreas Terfort, Denise Zacher, Roland A. Fischer, and Christof Wöll: Controlling Interpenetration in Metal-Organic Frameworks by Liquid Phase Epitaxy. In: Nature Materials, 3.5.2009, DOI: 10.1038/NMAT2445

Weitere Informationen

Prof. Dr. Christof Wöll, Lehrstuhl für Physikalische Chemie I der Ruhr-Universität Bochum, 44780 Bochum, Tel: 0234/32-25529, Fax: 0234/32-14182, E-Mail: woell@pc.ruhr-uni-bochum.de, Lehrstuhl-Homepage: http://www.pc.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik