Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ribosomen in Aktion "gefilmt"

15.07.2010
Wissenschaftler haben erstmals die Proteinfabrik der Zelle bei der Arbeit beobachtet

Forschern am Göttinger Max-Planck-Institut für biophysikalische Chemie ist es gelungen, dem Ribosom - der Proteinfabrik der Zelle - beim Bau der Proteine zuzusehen. Sie "filmten", wie Aminosäure-Transporter während der Proteinproduktion durch das Ribosom geschleust werden. Die dabei eingesetzte Technik der zeitaufgelösten 3D-Kryo-Elektronenmikroskopie erlaubt faszinierende neue Einblicke in die Funktionsweise der Proteinfabrik. (Nature, 15. Juli 2010)


Mithilfe der 3D-Kryo-Elektronenmikroskopie lässt sich der Weg der Aminosäure-Transporter (grün und rot) durch das Ribosom (blau-gelb) direkt \"filmen\". Bild: Max-Planck-Institut für biophysikalische Chemie / Stark

Ribosomen - die Proteinfabriken der Zelle - sind molekulare Hochleistungsmaschinen. Nach genetisch kodierten Produktionsplänen fertigen sie Proteine - die universellen Werkzeuge aller Zellen. Proteine bauen Muskeln auf, transportieren zelluläre Fracht, empfangen und übermitteln Signale, bringen chemische Reaktionen in Gang oder sorgen für Wachstum und Bewegung.

Bis zu 20.000 Ribosomen gibt es in einer Bakterienzelle, bis zu einer Million sind es in den Zellen unseres Körpers. Ribosomen bestehen aus über 50 Proteinkomponenten und mehreren Ribonukleinsäure-Molekülen. Mit 25 Nanometern sind Ribosomen etwa so groß wie die kleinsten Viren. Dass es den Forschern Venkatraman Ramakrishnan, Thomas Steitz und Ada Yonath gelang, ihre komplexe Struktur mithilfe der Röntgenkristallografie aufzuklären, brachte ihnen die höchste wissenschaftliche Auszeichnung ein: Sie erhielten dafür 2009 den Nobelpreis für Chemie.

Im Kristall sind Moleküle fixiert; atomar aufgelöste Kristallstrukturen von Ribosomen zeigen daher ein statisches Bild. Doch wie bei echten Maschinen sind die beweglichen Teile der Nanomaschine Ribosom ständig in Bewegung. Ihre genaue Funktionsweise erschließt sich auch hier erst durch genaue Betrachtung während des Betriebs. Die Göttinger Max-Planck-Forscher um Holger Stark und Marina Rodnina haben jetzt einer makromolekularen Maschine erstmals bei der Arbeit zugeschaut. Ihre "Filmsequenz" eines Ribosoms in Aktion zeigt faszinierende neue Einblicke in die Funktionsweise der Proteinfabrik. Sichtbar gemacht wurden die Vorgänge durch Einsatz eines 3D-Kryo-Elektonenmikroskops an schockgefrorenen Ribosomen.

Das mag paradox klingen, denn schockgefrorene Ribosomen können sich selbstverständlich nicht mehr bewegen. "Der Trick ist, dass wir die Ribosomen zunächst in Lösung zum Arbeiten bringen. Durch extrem schnelles Einfrieren zu verschiedenen Zeitpunkten können wir dann die molekulare Maschinerie während unterschiedlicher Arbeitsschritte stoppen. Das Elektronenmikroskop liefert uns mit diesen Proben eine Serie von Aufnahmen der Ribosomen während verschiedener Phasen der Proteinproduktion, bei denen sich die Ribosomen in ihrer räumlichen Struktur unterscheiden", erklärt Holger Stark, Leiter der Forschungsgruppe "Dreidimensionale Kryo-Elektronenmikroskopie" am Max-Planck-Institut für biophysikalische Chemie.

50 Ribosomen-Strukturen aus mehr als zwei Millionen Bildern

Der Nachwuchswissenschaftler Niels Fischer hat dazu mehr als zwei Millionen elektronenmikroskopische Bilder der Ribosomen bei der Arbeit aufgenommen und mit aufwendigen Computeralgorithmen nach ihrer Ähnlichkeit in Gruppen sortiert. Diese Gruppen entsprechen den verschiedenen Arbeitsschritten der Proteinfabrik während der Proteinproduktion. Im nächsten Schritt erfolgten die computergestützten Berechnungen der dreidimensionalen Strukturen dieser Ribosomen-Gruppen. Diese Strukturen wurden schließlich so sortiert, dass die Reihenfolge der Bilder die dynamischen Abläufe am Ribosom wiedergibt.

Der Erfolg: 50 Strukturen des Ribosoms in verschiedenen Zuständen der Proteinsynthese zeigen den Forschern, welchen Weg Aminosäure-Transporter -sogenannte Transfer-Ribonukleinsäuren (tRNAs) - während der Proteinproduktion durch das Ribosom nehmen. Wie ein Fließband wird die Matrize für die Proteinsynthese, die Boten-Ribonukleinsäure (mRNA), durch das Ribosom hindurchgeschleust. Dabei wird das fadenförmige mRNA-Molekül in Schritten von jeweils drei Nukleinsäurebasen abgetastet; die Tripletts werden von den passenden tRNAs abgelesen, die eine bestimmte Aminosäure binden. Die Aminosäuren werden nacheinander zu einer Kette zusammengesetzt und ergeben schließlich ein neues Proteinmolekül. Haben die tRNAs ihre Aminosäure-Fracht am Ribosom "abgeliefert", werden sie freigesetzt.

tRNAs auf ihrem Weg durch das Ribosom "zusehen"

"Wir können den Weg der tRNAs durch das Ribosom Schritt für Schritt verfolgen und beobachten, wie die Bewegungen der tRNAs mit den dynamischen Veränderungen des Ribosoms gekoppelt sind," sagt Fischer. "Eine Analyse dieser Kopplungen zeigt, dass Nanomaschinen wie das Ribosom anders funktionieren als mechanisch gekoppelte Maschinen in unserem Alltag. Spontane Bewegungen des Ribosoms und der tRNA-Moleküle sind dort nur relativ schwach gekoppelt", ergänzt Marina Rodnina, Leiterin der Abteilung "Physikalische Biochemie" am Institut.

Mithilfe der Kryo-Elektronenmikroskopie lässt sich nicht nur eine molekulare Maschine in Aktion sichtbar machen, sondern sogar bei Körpertemperatur untersuchen. Werden Ribosomen bei entsprechender Temperatur zum Arbeiten gebracht, lässt sich ihr Zustand durch schnelles Einfrieren in flüssigem Ethan konservieren. "Unsere Arbeiten haben gezeigt, dass die strukturelle Dynamik des Ribosoms bei 37 Grad Celsius erheblich zunimmt. Das Ribosom kann thermische Energie direkt in Bewegung umsetzen. Die bei physiologischen Bedingungen verfügbare thermische Energie ist für das Ribosom völlig ausreichend, um alle Bewegungen auszuführen, die für die Proteinproduktion erforderlich sind", erklärt Stark. Die Art und Weise, wie große molekulare Maschinen bei physiologisch relevanten Temperaturen arbeiten, können momentan nur mit der Kryo-Elektronenmikroskopie beobachtet werden. Die Methode verspricht daher einzigartige neue Einblicke in die Funktionsweise zellulärer Maschinen.

Die Arbeitsweise des Ribosoms im Detail zu kennen, ist auch für die Medizin von großer Bedeutung. Bestimmte Antibiotika wirken deshalb so erfolgreich, weil sich Ribosomen von Bakterien und höheren Organismen in wichtigen Details unterscheiden. Solche Antibiotika hemmen nur die bakterielle Proteinfabrik, die Ribosomen höherer Zellen dagegen bleiben verschont. Ein genaues Verständnis der Struktur und Funktion des Ribosoms ist daher unerlässlich, um zukünftig neue Antibiotika entwickeln zu können.

Originalveröffentlichung:

Niels Fischer, Andrey L. Konevega, Wolfgang Wintermeyer, Marina V. Rodnina, Holger Stark
Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy
Nature, 15. Juli 2010
Weitere Informationen erhalten Sie von:
Prof. Dr.Holger Stark, Forschungsgruppe "Dreidimensionale Kryo-Elektronenmikroskopie"
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1305
E-Mail: hstark1@gwdg.de
Prof. Marina Rodnina, Abteilung für "Physikalische Biochemie"
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2900/2901
E-Mail: rodnina@mpibpc.mpg.de
Prof. Dr. Wolfgang Wintermeyer, Forschungsgruppe "Ribosomendynamik"
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2902
E-Mail: Wolfgang.Wintermeyer@mpibpc.mpg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: crotte@gwdg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/video/mpibpc/ribo.swf

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics