Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Rennrad zum Mountainbike

18.03.2009
Wissenschaftler aus Freiburg zeigen, wie wir Bewegungsabläufe generalisieren

Wer eislaufen kann, lernt auch schneller Rollschuhfahren. Wer Radfahren auf einem Hollandrad oder einem Rennrad gelernt hat, wird auch das Mountainbike schnell fahren lernen - obwohl die Rückmeldung von den Muskeln und die genaue Bewegungssteuerung durchaus eine andere ist.

Wie generalisieren wir Bewegungsabläufe, wie übertragen wir die Fähigkeit Fahrrad zu fahren von einem Rad auf das andere? Dies haben nun Wissenschaftler um Carsten Mehring vom Bernstein für Zentrum Computational Neuroscience und der Universität Freiburg untersucht. Wie sie zeigen konnten, lernen wir "strukturiert" - das heißt: wir lernen, welche Bewegungsaspekte in welcher Weise zusammenhängen. Die Arbeit wurde in der wissenschaftlichen Fachzeitschrift "Current Biology" publiziert.

Bei einer komplexen Bewegung, wie Fahrradfahren, müssen wir viele Parameter kontrollieren - zum Beispiel die Position der Arme und Beine und die Spannung der Rumpfmuskulatur. Lernen wir eine ähnliche Bewegung, so sind auch diese Parameter ähnlich. Aber reicht das schon aus, um zu erklären, wie wir Bewegungsabläufe generalisieren? Nach der aktuellen Studie von Mehring und seinen Kollegen steckt noch mehr dahinter. Wir lernen, welche Kontrollparameter eine bestimmte Bewegungsklasse auszeichnen und und wie sie zusammenhängen. Treten wir beim Radfahren beispielsweise mit dem linken Fuß nach unten, so bewegen wir den rechten nach oben. Und nicht nur das: "Es gibt mehr als 600 Muskeln im menschlichen Körper, die in koordinierter Art und Weise mehr oder weniger angespannt werden müssen und viele sensorische, visuelle und haptische Rückmeldungen, die für eine Klasse von Bewegungsaufgaben - wie bspsw. Fahrradfahren - in einem bestimmten Zusammenhang stehen", sagt Mehring. "Wenn wir von einem Fahrrad auf ein anderes umlernen, verändern wir nur die Bewegungsaspekte, auf die es bei dieser Bewegungsklasse ankommt und testen nur Parameterkombinationen, die bei dieser Bewegungsklasse Sinn machen".

In verschiedenen Experimenten haben Mehring und seine Kollegen die Hypothese, dass ein solches Bewegungsprinzip erlernt werden kann, überprüft. In einem Experiment sollten Probanden beispielsweise mit einem Cursor auf einem Computerbildschirm einen bestimmten Punkt ansteuern. In dem Experiment lag dabei zwischen der Handbewegung und der Cursorbewegung auf dem Bildschirm eine Rotation - bewegten die Probanden die Maus nach rechts, bewegte sich der Cursor beispielsweise schräg nach unten und die Probanden mussten ihre Bewegung entsprechend anpassen. Von Versuchsdurchlauf zu Versuchsdurchlauf änderte sich der Rotationswinkel, so dass kein bestimmter Rotationswinkel gelernt werden konnte.

Dennoch hatten die Probanden nach einigen Versuchsdurchläufen etwas dazugelernt. Bekamen sie nun die gleiche Rotationsaufgabe mehrmals hintereinander, waren sie sehr viel schneller in der Lage, gerade und rasche Bewegungen durchzuführen, als Probanden ohne Vorerfahrung. "Sie hatten das Prinzip gelernt, dass zwischen ihrer eigenen Bewegung und dem Ergebnis eine Rotation liegt - und nicht etwa eine Skalierung oder eine Spiegelung", sagt Mehring. Sie mussten daher nur noch wenige Parameterkombinationen durchspielen, um den richtigen Bewegungsablauf hinzubekommen. "Strukturiertes lernen" nennen die Wissenschaftler das im Fachjargon. Die Generalisierung von Bewegungsabläufen, so konnten die Wissenschaftler um Mehring zeigen, beruht auf strukturiertem Lernen.

Originalveröffentlichung:
Daniel A. Braun, Ad Aertsen, Daniel M. Wolpert und Carsten Mehring
Motor task variation induces structural learning.
Curr Biol. 2009 Feb 24;19(4):352-7. Epub 2009 Feb 12.
doi:10.1016/j.cub.2009.01.036
Kontakt:
Dr. Carsten Mehring
Institut für Biologie I &
Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Hauptstr.1, 79104 Freiburg
Tel.: ++49-(0)761-2032543
E-mail: mehring@biologie.uni-freiburg.de
Dr. Daniel A. Braun
Institut für Biologie I & Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg (Germany); und
Department of Engineering,
University of Cambridge (UK)
E-mail: dab54@cam.ac.uk

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn.uni-freiburg.de/
http://www.bmi.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics