Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reißverschlussverfahren in den Adern

31.03.2009
Jülicher Forscher erklären Verhalten roter Blutkörperchen in Strömung / Computersimulation: "Blut in Bewegung"

Für das Strömungsverhalten des Blutes spielt der Gehalt an Blutkörperchen, auch Hämatokrit genannt, eine entscheidende Rolle.

Wie Physiker des Forschungszentrums Jülich und der Universität Tokio mit Computersimulationen herausfanden, beeinflusst der Hämatokrit außerdem die Form und Anordnung der roten Blutkörperchen in Kapillargefäßen. Ihre Ergebnisse veröffentlicht die renommierte Fachzeitschrift "Proceedings of the National Academy of Sciences of the United States of America" in der Woche vom 30. März 2009 in ihrer Online-Ausgabe (PNAS Early Edition).

Mit ihrer Arbeit zeigen die Forscher beispielhaft, wie nützlich physikalisches Know-How auch für die Lebenswissenschaften ist. Rote Blutkörperchen sind die häufigsten Zellen im Blut von Wirbeltieren; jeder gesunde Erwachsene besitzt etwa 25 Billionen von ihnen. Sie transportieren den Sauerstoff auf ihrem Weg durch das Gefäßsystem und geben dem Blut seine rote Farbe. Unter dem Mikroskop in Ruhe betrachtet haben sie eine diskusähnliche Form. Wenn sie sich aber bewegen und durch unsere Adern und Äderchen oder auch durch künstliche Kapillaren in Laboren strömen, können sie auch andere Formen einnehmen. Physiker aus Jülich und Tokio haben untersucht, wie sich das Strömungsverhalten von Gruppen roter Blutkörperchen und in engen Kapillaren - nur wenig breiter als der Durchmesser der Zelle - in Abhängigkeit von ihrer Dichte verändert. Dies ist etwa für medizinische Untersuchungsmethoden von Interesse, bei denen Blutproben maschinell sortiert, gezählt und untersucht werden.

"Wir simulierten im Computer die Biege- und Schersteifigkeit der einzelnen Zelle, indem wir ein detailliertes physikalisches Modell für die Zellhaut und das darunter liegende Proteingerüst entwickelten", erläutert Prof. Gerhard Gompper, Direktor am Jülicher Institut für Festkörperforschung. "Außerdem variierten wir Hämatokrit und Strömungsgeschwindigkeit. So konnten wir verschiedene Bedingungen miteinander vergleichen und sogar Zustände simulieren, die real gar nicht vorkommen. Das ist ein einzigartiger Vorteil von Simulationen."

Und das passiert in den Blutgefäßen: Bei niedrigem Gehalt an Blutkörperchen biegen sich diese ab einer bestimmten Geschwindigkeit fallschirmförmig durch und ordnen sich hintereinander in der Mitte der Kapillare an, um den Strömungswiderstand zu minimieren. Bei höherer Dichte werden die durch Strömung vermittelten Kräfte wichtig. Diese bewegen einzelne Zellen leicht aus ihrer mittigen Position. Je mehr eine Zelle sich aber der Kapillarwand nähert, umso stärker wird sie abgebremst; die im kurzen Abstand nachfolgende Zelle rutscht seitlich daneben. Die Form der Blutkörperchen verändert sich dabei: Das Ergebnis sind zwei reißverschlussartig ineinander geschobenen Reihen pantoffelförmiger Zellen. Diese Anordnung roter Blutkörperchen wurde in menschlichen Blutgefäßen bereits 1969 erstmals beobachtet. Erstaunt hat die Forscher, dass der Strömungswiderstand bei diesem Übergang sprunghaft ansteigt - und damit auch die Pumpleistung, die das Herz aufbringen muss, um die gleiche Blutmenge durch die Kapillargefäße zu pressen. Die lineare Anordnung hätte bei gleichem Hämatokrit einen geringeren Strömungswiderstand, gleichwohl lässt sie sich nur künstlich im Computer erzeugen.

"Es hat 40 Jahre gedauert, bis Membranmodelle, Methoden zur Simulation von Strömungen und die notwendigen Rechenleistungen so weit entwickelt waren, dass solche Fragen im Computer ("in silico") untersucht werden können. Mit unserer Simulation konnten wir nun erstmals nachvollziehen, wie die Reißverschlussanordnung entsteht", berichtet Gompper. Die Physiker wollen in Zukunft eine Vielzahl an Fragen untersuchen, etwa wie die Form der Kapillare oder krankheitsbedingte Veränderungen der Verformbarkeit der Blutkörperchen das Strömungsverhalten beeinflussen.

Originalveröffentlichung:
Flow-induced Clustering and Alignment of Vesicles and Red Blood Cells in Microcapillaries
J. L. Mc Whirter, H. Noguchi, G. Gompper
PNAS Early Edition (EE), 14. Kalenderwoche, Manuskriptnummer 2008-11484R
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin,
Forschungszentrum Jülich, Institut für Festkörperforschung
52425 Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.
Weitere Informationen:
http://www.fz-juelich.de/portal/lw_resource/datapool/video/2009-03-30-Blutkoerpe... - Computeranimation
http://www.fz-juelich.de - Forschungszentrum Jülich
http://www.fz-juelich.de/iff/ - Institut für Festkörperforschung (IFF)
http://www.fz-juelich.de/iff/d_th2/ - IFF-2 "Theorie der weichen Materie und Biophysik

Peter Schäfer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie