Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reine Nervensache: Zoologen der Uni Graz haben herausgefunden, wie Laubheuschrecken ihre Fressfeinde hören

20.09.2010
Liebeswerben oder Lebensgefahr? Laute von Freund und Feind unterscheiden zu können, zählt zu den wichtigsten Aufgaben im Leben vieler Tiere. Nur wer die Anwesenheit von Räubern früh erkennt, kann rechtzeitig das Weite suchen.

Zoologen der Karl-Franzens-Universität Graz haben nun erstmals gezeigt, wie Laubheuschrecken im Stimmengewirr des tropischen Regenwaldes die Echo-Ortungslaute ihrer Fressfeinde, der Fledermäuse, erkennen können. Die Forschungsergebnisse wurden kürzlich im "Journal of Experimental Biology" veröffentlicht.

Der tropische Regenwald von Panama ist das Terrain, auf dem Wissenschafter aus der Arbeitsgruppe um O.Univ.-Prof. Dr. Heiner Römer vom Institut für Zoologie der Uni Graz unter anderem das Hörvermögen von Laubheuschrecken erforschen. Die nächtliche Geräuschkulisse stellt höchste Anforderungen an das Sinnesorgan der Insekten, wie Römer weiß: „Heuschrecken, Grillen, Zikaden und Frösche sorgen für ziemlich starken Lärm. Trotzdem können Laubheuschrecken ihre Hauptfeinde, die Fledermäuse, rechtzeitig detektieren, obwohl deren Echosignale wie ihre eigenen Gesänge im Ultraschallbereich liegen.“

Die Grazer Wissenschafter haben nun als Erste bewiesen, dass akustische Nervenzellen der Laubheuschrecken den Hintergrundlärm stark unterdrücken, sobald Fledermäuse in der Nähe der Insekten jagen. Mit Hilfe einer selbst entwickelten Software stellten sie außerdem fest, dass sich das zeitliche Muster der Nervenaktivität in Anwesenheit von Fledermäusen signifikant ändert. Dr. Manfred Hartbauer nutzte diesen charakteristischen Unterschied im neuronalen Code, um einen „nervösen Fledermausdetektor“ zu programmieren, der immer dann Alarm gibt, wenn die fliegenden Feinde in der Nähe sind.

Beeindruckt waren die Grazer Zoologen über die Treffsicherheit dieser Methode: „In rund 95 Prozent der Fälle wird die Anwesenheit von jagenden Fledermäusen trotz starkem Hintergrundlärm korrekt erkannt“, erklärt Hartbauer. Diese Leistung kann ein im Handel erhältlicher Fledermausdetektor, der auf sämtliche Ultraschallsignale reagiert, nicht annähernd erreichen.

Kontakt:
Dr. Manfred Hartbauer
Institut für Zoologie der Karl-Franzens-Universität Graz
Tel.: +43 (0)316/380-5615
E-Mail: manfred.hartbauer@uni-graz.at

Gudrun Pichler | idw
Weitere Informationen:
http://jeb.biologists.org/cgi/content/abstract/213/17/3036

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops