Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regeneration in feindlicher Umgebung - Krebswirkstoff lässt verletzte Neuronen wieder wachsen

13.03.2015

Rückenmarksverletzungen heilen selten, weil die Nervenzellen nicht spontan regenerieren. Das Wachstum der langen Nervenfortsätze wird durch das Narbengewebe und molekulare Prozesse im Nerveninneren verhindert. Wie ein internationales Forscherteam unter der Leitung von DZNE-Wissenschaftlern in Bonn jetzt in Science zeigt, könnte Hilfe von unerwarteter Seite kommen: Der Krebswirkstoff Epothilon reduziert im Tiermodell bei Rückenmarksverletzungen die Narbenbildung und aktiviert das Wachstum von verletzten Nervenzellen. Beides fördert neuronale Regeneration und verbessert die motorischen Fähigkeiten der Tiere.

Nervenzellen sind wie lange Leitungsbahnen, die Signale in Form elektrischer Impulse weiterleiten. Unfälle oder Erkrankungen können diese Funktion stören. Ob sich die betroffenen Nerven wieder erholen, hängt wesentlich davon ab, wo sie sich befinden: Nervenzellen in Gliedmaßen, Rumpf oder Nase können sich bis zu einem gewissen Grad regenerieren und ihre Funktion wieder teilweise oder ganz zurückgewinnen.

Die Neurone im Gehirn und Rückenmark verfügen jedoch nicht über diese Fähigkeit. Werden sie durch Unfälle oder Erkrankungen verletzt, bleiben meist Lähmungen oder andere Einschränkungen zurück. Was aber steht einer Regeneration dieser Neurone und ihrer langen Fortsätze, der Axone, im Weg? Bekannt ist, dass inhibitorische Faktoren im neu gebildeten Narbengewebe und andere zelluläre Prozesse das axonale Wachstum blockieren.

Auf der Suche nach der idealen Therapie

„Eine ideale Therapie für die Regeneration von Axonen bei Rückenmarksverletzungen sollte die Vernarbung verringern", sagt Professor Frank Bradke, der am Bonner Standort des DZNE eine Arbeitsgruppe leitet und die Studie geführt hat. „Wichtig ist aber auch, dass wachstumshemmende Faktoren reduziert sowie das ohnehin geringe Regenerationspotential der Axone reaktiviert werden." Entscheidend für den klinischen Einsatz ist die einfache Verabreichung des potentiellen Wirkstoffs.

In Zusammenarbeit mit internationalen Forschern könnte Bradke und seinen Mitarbeitern nun ein weiterer Schritt hin zu einer zukünftigen Therapie gelungen sein. Bekannt war durch ihre vorhergehende Forschung, dass eine Stabilisierung der Mikrotubuli die Narbenbildung reduziert und axonales Wachstum fördert. Mikrotubuli sind lange, zylinderförmige Filamente im Inneren der Zelle, die je nach Bedarf dynamisch auf- und abgebaut werden. Sie gehören zum stützenden Skelett der Zelle, die Zellwachstum und -bewegung überhaupt erst ermöglichen.

Der Wirkstoff Epothilon kann Mikrotubuli stabilisieren und ist bereits auf dem amerikanischen Markt zugelassen - als Krebsmedikament. „Es kommt auf die Dosis an", sagt Dr. Jörg Ruschel, Erstautor der Studie. „In hoher Dosis hemmt Epothilon das Wachstum von Krebszellen, während eine niedrige Dosis im Tiermodell das axonale Wachstum anregt, ohne dass es dabei zu schweren Nebenwirkungen einer Krebstherapie kommt." Ähnlich wirkenden Krebsmitteln ist Epothilon überlegen, weil es durch die Blut-Hirn-Schranke in das Zentralnervensystem vordringen kann und somit die verletzten Axone direkt erreicht.

Ein Wirkstoff - viele Effekte

Im Experiment zeigte sich, dass dieser Wirkstoff auf mehrfacher Ebene tätig wird. Zum einen konnte Epothilon die Narbenbildung reduzieren, indem es die Ausbildung von Mikrotubuli-Filamente in genau den Zellen störte, die die Narbe bilden. Ohne diese Strukturen können diese Zellen nicht aus dem Bindewege in Wunden migrieren und dort zur Vernarbung beitragen. In Nervenzellen dagegen, förderte Epothilon Wachstum und Regeneration, durch den schnellen Aufbau von Mikrotubuli-Filamenten in der verletzten Axonen.

Kurz gesagt: Über ein- und denselben Effekt, die Stabilisierung von Mikrotubuli, konnte Epothilon in einem Zelltyp die gerichtete Bewegung verhindern, in einem anderen aber das gezielte Wachstum anregen. Dadurch waren die mit Epothilon therapierten Tiere nach einer Rückenmarksverletzung deutlich agiler als unbehandelte Artgenossen und konnten - dank wiedergewonnener Balance und Koordination - besser laufen. Das nächste Ziel von Bradke und sein Team ist es den Effekt von Epothilonen bei unterschiedlichen Läsionstypen zu testen. (suwe)

Originalveröffentlichung

„Systemic administration of epothilone B promotes axon regeneration after spinal cord injury”, Jörg Ruschel, Farida Hellal, Kevin C. Flynn, Sebastian Dupraz, David A. Elliott, Andrea Tedeschi, Margaret Bates, Christopher Sliwinski, Gary Brook, Kristina Dobrint, Michael Peitz, Oliver Brüstle, Michael D. Norenberg, Armin Blesch, Norbert Weidner, Mary Bartlett Bunge, John L. Bixby and Frank Bradke, Science, 2015, doi: 10.1126/science.aaa2958

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen. www.dzne.de, www.twitter.com/dzne_de.

Pressekontakt
Ulrike Koch
Public and Political Affairs
DZNE
Tel.: +49 (0)228 / 43302-263
E-Mail: ulrike.koch@dzne.de

Weitere Informationen:

http://www.dzne.de/ueber-uns/presse/meldungen/2015/pressemitteilung-nr-2.html

Ulrike Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften