Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um kaltes Wasser gelöst

01.06.2012
Unterkühlte Flüssigkeit existiert in zwei Formen unterschiedlicher Dichte

Was in der Forschung lange als unergründliches Rätsel galt, haben Wissenschaftler der Universität Innsbruck um Prof. Thomas Lörting jetzt mit theoretischen und experimentellen Arbeiten belegt: stark unterkühltes Wasser setzt sich aus zwei unterschiedlich dichten Flüssigkeiten zusammen.


In einem Druckzylinder kühlen die Innsbrucker Forscher Wasser auf sehr tiefe Temperaturen ab. Eva Fessler/Uni Innsbruck


Unterkühltes Wasser hat eine starke Tendenz zu kristallisieren und kann deshalb nur sehr schwer untersucht werden. Eva Fessler/Uni Innsbruck

Es bedeckt über zwei Drittel unserer Erde und bildet den Grundstoff des menschlichen Körpers. Wasser ist der „Urstoff“, der Leben auf der Erde möglich macht. Es ist allgegenwärtig und birgt doch viele Geheimnisse. Die Wissenschaft kennt heute über 60 Eigenschaften, in denen sich Wasser von fast allen anderen Flüssigkeiten unterscheidet. Während etwa fast alle Festkörper in der eigenen Schmelze untergehen, schwimmt Eis auf dem Wasser. Sein Gefrierpunkt liegt bei null Grad Celsius, doch kann Wasser auch stark unterkühlt werden.

„Je tiefer es unterkühlt wird, desto ausgeprägter werden seine anomalen Eigenschaften“, erzählt Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck. Dass Wasser bei sehr tiefen Temperaturen aus zwei unterschiedlichen Flüssigkeiten bestehen könnte, wurde aufgrund experimenteller Beobachtungen bereits in den 1980-er Jahren vermutet. Lange Zeit blieb diese Theorie allerdings äußerst umstritten, weil sie in der Praxis nicht direkt nachweisbar war. „Unterkühltes Wasser hat eine starke Tendenz zu kristallisieren und kann deshalb nur sehr schwer untersucht werden“, erklärt der Physikochemiker Lörting.

Wichtige Hinweise lieferte aber die Untersuchung der festen Form von Wasser. Diese besteht nicht aus Eiskristallen, sondern behält die molekulare Struktur der flüssigen Form - Wasser das fest, aber nicht gefroren ist. „Dabei zeigte sich, dass es abhängig vom Umgebungsdruck zwei unterschiedliche Formen von festem Wasser - oder amorphem Eis - gibt, eine mit niedriger Dichte und eine hochdichte Form.“ Die Vermutung lag nun nahe, dass beim Übergang von diesen festen in flüssige Phasen ebenfalls zwei unterschiedlich dichte Flüssigkeiten entstehen.

Bisher nicht direkt gemessen

Es konnte bereits gezeigt werden, dass sich festes Wasser niedriger Dichte bei -137 Grad Celsius verflüssigt. In einer in der Fachzeitschrift Physical Review Letters veröffentlichten Forschungsarbeit haben Thomas Lörting und sein Team nun erstmals auch für hochdichtes Wasser bestimmt, dass das Relaxationsverhalten bei steigender Temperatur tatsächlich flüssigkeitsartig wird. „Bei einem Druck zwischen 1000 und 2000 bar verflüssigt sich das Wasser zwischen circa -138 und -133 Grad Celsius“, sagt Lörting. Da das Wasser in einem kleinen Zylinder unter einen Hochdruckpresse gekühlt wird und nicht direkt beobachtet werden kann, mussten die Forscher ein neues Verfahren für ihre Messung entwickeln. Sie beobachteten, wie lange es dauert bis das hochdichte Wasser bei einer bestimmten Temperatur ins Gleichgewicht kommt und einen Ruhezustand einnimmt.

Substanzen gelten dann als flüssig, wenn dies innerhalb von 100 Sekunden geschieht. Während dies bei -163°C viele Tage dauert, so sind es bei -138°C nur mehr wenige Minuten. „Dieser Phasenübergang wurde bisher noch von niemandem direkt gemessen. Gemeinsam mit früheren Ergebnissen liefert uns dies einen klaren Hinweis auf die Existenz von zwei unterschiedlichen Flüssigkeiten von Wasser“, ist Lörting stolz.

Die Daten aus dem Experiment decken sich mit einer theoretischen Arbeit, die Thomas Lörting gemeinsam mit amerikanischen Kollegen vor kurzem in Nature Scientific Reports veröffentlicht hat. Mit Computermodellen wurde darin gezeigt, dass die nun gemessenen Ergebnisse nur durch die Existenz von zwei Flüssigkeiten erklärt werden können. Bereits im vergangenen Jahre haben die Innsbrucker Forscher die zwei Flüssigkeiten experimentell erzeugt und wieder eingefroren. „Die niedrig- und hochdichten Formen verhalten sich wie Wasser und Öl. Sie entmischen sich und bilden zwei Schichten“, erläutert Thomas Lörting das Experiment. Die Wissenschaftler entnahmen die gefrorene Probe dem Druckzylinder und lösten die beiden Eisformen voneinander. „Bei höheren Temperaturen expandiert die hochdichte Eisform und geht in die niedrigdichte Form über“, erzählt der Chemiker, „ein weiterer Beweis für die Existenz von zwei flüssigen Formen von Wasser.“

Diese Arbeiten entstanden im Rahmen der Forschungsplattform Material- und Nanowissenschaften an der Universität Innsbruck und wurden vom Europäischen Forschungsrat (ERC), dem österreichischen Forschungsförderungsfonds (FWF) und der Österreichischen Akademie der Wissenschaften (ÖAW) finanziell unterstützt.

Publikationen:

Relaxation Time of High-Density Amorphous Ice. Philip H. Handle, Markus Seidl, Thomasa Loerting, Phys. Rev. Lett. 108, 225901 (2012). doi:10.1103/PhysRevLett.108.225901
Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water. Nicolas Giovambattista,Thomas Loerting,Boris R. Lukanov& Francis W. Starr. Scientific Reports 2 (2012) 390. doi:10.1038/srep00390 (open access)
Equilibrated high-density amorphous ice and its first-order transition to the low-density form. Katrin Winkel, Erwin Mayer, Thomas Loerting. J. Phys. Chem. B 115 (2011) 14141-8. doi:10.1021/jp203985w

Volumetric study consistent with a glass-to-liquid transition in amorphous ices under pressure. Markus Seidl, Michael S. Elsaesser, Katrin Winkel, Gerhard Zifferer, Erwin Mayer, Thomas Loerting. Phys. Rev. B 83 (2011) doi:10.1103/PhysRevB.83.100201

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at
http://www.uibk.ac.at/public-relations/presse/archiv/2012/060101/winkel11-jpcb-video.mpg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften