Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantentunneln der Kohlensäure

13.06.2016

Internationales Team der Justus-Liebig Universität Gießen und der University of Georgia (USA) entdeckt neue Eigenschaft der Kohlensäure

Quantentunneln ist eines der seltsamsten Phänomene der Quantentheorie. Es erlaubt die Umwandlung eines Moleküls in ein anderes, in dem es durch statt über eine Energiebarriere reagiert. Man könnte einen solchen Tunnelprozess bildhaft mit der Durchfahrt eines Alpentunnels mit dem Auto vergleichen, wobei ein Tunnel tatsächlich gar nicht vorhanden wäre, erläutert Prof. Peter. R. Schreiner vom Institut für Organische Chemie der Justus-Liebig-Universität Gießen (JLU). Ein solcher Vorgang scheine deshalb nahezu unmöglich und folge auch nicht den Gesetzen der klassischen Physik.


Domino Tunneling. Peter R. Schreiner,* J. Philipp Wagner, H. P. Reisenauer, Dennis Gerbig, David Ley, János Sarka, Attila G. Császár, Alexander Vaughn and Wesley D. Allen

J. Am. Chem. Soc. 2015, 137, 7828–7834. DOI: 10.1021/jacs.5b03322

https://www.uni-giessen.de/fbz/fb08/Inst/organische-chemie/agschreiner/research/tunneling

So fremdartig dem Laien dieses Phänomen auch erscheinen mag, ein wissenschaftliches Team der Arbeitsgruppe von Prof. Schreiner (JLU) und der University of Georgia, USA, (Arbeitsgruppe Prof. Wesley D. Allen) konnte zeigen, dass Quantentunneln ständig passiert, und zwar in Substanzen, mit denen wir alle bestens vertraut sind: in kohlensäurehaltigen Getränken.

Eine Arbeit hierzu wurde am 24. Mai 2016 in dem Fachjournal Chemical Communications (doi: 10.1039/C6CC01756H) veröffentlicht. Das für die prickelnde Erfrischung verantwortliche Molekül – gasförmiges Kohlendioxid (CO¬2) – bildet sich dabei aus der schnellen Zersetzung der in diesen Getränken enthaltenen Kohlensäure (H2CO3).

Sehr lange war man sich in der Wissenschaft nicht einmal einig, ob es die Kohlensäure in der Gasphase denn überhaupt gibt oder sie sich vielmehr extrem schnell in CO2 und Wasser zersetzt. So gab es erste Hinweise auf die Gasphasenstabilität der H2CO3 erst seit 1987; eine Bestätigung fanden diese aber erst im Jahr 2009.

Die Arbeitsgruppe von Prof. Schreiner hat kürzlich einen neuen synthetischen Zugang zu gasförmigen Kohlensäure eröffnet (DOI: 10.1002/ange.201406969) und diese unter sehr kalten Bedingungen eingehend untersucht. Die Untersuchungen erfolgten bei Temperaturen nahe dem absoluten Nullpunkt und damit unter Bedingungen, wie man sie auch im Weltraum findet. Dabei fanden die Wissenschaftler zwei geometrische Isomere, sogenannten Konformere, deren gegenseitige Umwandlung über einen gewissen Zeitraum genau nachverfolgt werden konnte.

Es stellte sich heraus, dass das energetisch höher liegende Konformer sich in wenigen Stunden (abhängig von der exakten Temperatur und dem umgebenden Material) in das energetisch tiefer liegende Konformer umwandelt, obwohl hierfür nicht ausreichend Energie zur Verfügung steht. Qualitativ sehr hochwertige Berechnungen der Arbeitsgruppe von Prof. Allen zeigen, dass es sich hier um einen quantenmechanischen Tunnelprozess handeln muss.

Die komplexen Zerfalls- und Umwandlungsmechanismen wurden mittels mathematischer Modelle, wie sie schon für das sogenannte „Domino-Tunneln“ (DOI: 10.1021/jacs.5b03322) entwickelt wurden, beschrieben.

Die vorliegende Analyse der Kohlensäure zeigt, dass konformatives Tunneln ein weit verbreitetes Phänomen ist, das empfindlich von der Umgebung abhängt und damit auch von außen kontrolliert werden kann. In der Weiterentwicklung solcher Studien können sich also neue Möglichkeiten zur Kontrolle von Selektivitäten chemischer Reaktionen eröffnen.

Publikation
J. Philipp Wagner, Hans-Peter Reisenauer, Vivii Hirvonen, Chia-Hua Wu, Joseph L. Tyberg, Wesley D. Allen, and Peter R. Schreiner: „Tunneling in Carbonic Acid“, Chemical Communications, May 24, 2016
DOI: 10.1039/C6CC01756H
http://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc01756h#!divAbstract

Kontakt
Prof. Dr. Peter R. Schreiner
Institut für Organische Chemie der JLU Gießen
Heinrich-Buff-Ring 17, 35392 Gießen
Telefon: 0641 99-34300
E-Mail: prs@uni-giessen.de

Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die über 28.000 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissenschaften – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veterinärmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlichkeiten, die an der JLU geforscht und gelehrt haben, befindet sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC).

Weitere Informationen:

http://www.uni-giessen.de/fbz/fb08/Inst/organische-chemie/agschreiner/research/t...
http://www.uni-giessen.de/schreiner

Charlotte Brückner-Ihl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau